Skip to main content
Log in

Aortic Valve Function Under Support of a Left Ventricular Assist Device: Continuous vs. Dynamic Speed Support

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Continuous flow left ventricular devices (CF-LVADs) support the failing heart at a constant speed and alters the loads on the aortic valve. This may cause insufficiency in the aortic valve under long-term CF-LVAD support. The aim of this study is to assess the aortic valve function under varying speed CF-LVAD support. A Medtronic freestyle valve and a Micromed DeBakey CF-LVAD were tested in a mock circulatory system. First, the CF-LVAD was operated at constant speeds between 7500 and 11,500 rpm with 1000 rpm intervals. The mean pump outputs obtained from these tests were applied in varying speed CF-LVAD support mode using a reference model for the pump flow. The peak of the instantaneous pump flow was applied at peak systole and mid-diastole, respectively. Ejection durations and in the aortic valve were the longest when the peak pump flow was applied at mid-diastole among the CF-LVAD operating modes. Furthermore, mean aortic valve area over a cardiac cycle was highest when the peak pump flow was applied at mid-diastole. The results show that changing phase of the reference flow rate signal may reduce the effects of the CF-LVADs on altered aortic valve closing behavior, without compromising the overall pump support level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Amir, O., B. Radovancevic, R. M. Delgado, et al. Peripheral vascular reactivity in patients with pulsatile vs axial flow left ventricular assist device support. J. Heart Lung Transplant. 25:391–394, 2006.

    Article  PubMed  Google Scholar 

  2. Ando, M., Y. Takewa, T. Nishimura, et al. A novel counterpulsation mode of rotary left ventricular assist devices can enhance myocardial perfusion. J. Artif. Organs 14:185–191, 2011.

    Article  PubMed  Google Scholar 

  3. Cowger, J., F. D. Pagani, J. W. Haft, M. A. Romano, K. D. Aaronson, and T. J. Kolias. The development of aortic insufficiency in left ventricular assist device-supported patients. Circ. Heart Fail. 3:668–674, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Cox, L. G. E., S. Loerakker, M. C. M. Rutten, B. A. J. M. de Mol, and F. N. van de Vosse. A mathematical model to evaluate control strategies for mechanical circulatory support. Artif. Organs 33:593–603, 2009.

    Article  PubMed  Google Scholar 

  5. Crow, S., R. John, A. Boyle, et al. Gastrointestinal bleeding rates in recipients of nonpulsatile and pulsatile left ventricular assist devices. J. Thorac. Cardiovasc. Surg. 137:208–215, 2009.

    Article  CAS  PubMed  Google Scholar 

  6. Feldman, C. M., M. A. Silver, M. A. Sobieski, and M. S. Slaughter. Management of aortic insufficiency with continuous flow left ventricular assist devices: bioprosthetic valve replacement. J. Heart Lung Transplant. 25:1410–1412, 2006.

    Article  PubMed  Google Scholar 

  7. Gokce, N., J. F. Keaney, L. M. Hunter, et al. Predictive value of noninvasively determined endothelial dysfunction for long-term cardiovascular events in patients with peripheral vascular disease. J. Am. Coll. Cardiol. 41:1769–1775, 2003.

    Article  PubMed  Google Scholar 

  8. Gregory, S. D., M. C. Stevens, E. Wu, J. F. Fraser, and D. Timms. In vitro evaluation of aortic insufficiency with a rotary left ventricular assist device. Artif. Organs 37:802–809, 2013.

    PubMed  Google Scholar 

  9. Ising, M., S. Warren, A. M. Sobieski, M. S. Slaughter, S. C. Koenig, and G. A. Giridharan. Flow modulation algorithms for continuous flow left ventricular assist devices to increase vascular pulsatility: a computer simulation study. Cardiovasc. Eng. Technol. 2:90–100, 2011.

    Article  Google Scholar 

  10. John, R., K. Mantz, P. Eckman, A. Rose, and K. May-Newman. Aortic valve pathophysiology during left ventricular assist device support. J. Heart Lung Transplant. 29:1321–1329, 2010.

    Article  PubMed  Google Scholar 

  11. Khalil, H. A., D. T. Kerr, M. A. Schusterman, W. E. Cohn, O. H. Frazier, and B. Radovancevic. Induced pulsation of a continuous-flow total artificial heart in a mock circulatory system. J. Heart Lung Transplant. 29:568–573, 2010.

    Article  PubMed  Google Scholar 

  12. Letsou, G. V., J. H. Connelly, R. M. Delgado, III, et al. Is native aortic valve commissural fusion in patients with long-term left ventricular assist devices associated with clinically important aortic insufficiency? J. Heart Lung Transplant. 25:395–399, 2006.

    Article  PubMed  Google Scholar 

  13. Loebe, M., A. Koster, S. Sägner, et al. Inflammatory response after implantation of a left ventricular assist device: comparison between the axial flow Micromeddebakeyvad and the pulsatile novacor device. ASAIO J. 47:272–274, 2001.

    Article  CAS  PubMed  Google Scholar 

  14. Loforte, A., P. L. D. Monica, A. Montalto, and F. Musumeci. HeartWare third-generation implantable continuous flow pump as biventricular support: mid-term follow-up. Interact Cardiovasc. Thorac. Surg. 12:458–460, 2011.

    Article  PubMed  Google Scholar 

  15. Martina, J. R., M. E. I. Schipper, N. de Jonge, et al. Analysis of aortic valve commissural after support with continuous-flow left ventricular assist device. Interact CardioVasc. Thorac. Surg. 17:616–624, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Maxon Motor DECS 50/5 Catalogue, June 2009 Edition.

  17. May-Newman, K., L. Enriquez-Almaguer, P. Posuwattanakul, and W. Dembitsky. Biomechanics of the aortic valve in the continuous flow VAD-assisted heart. ASAIO J. 56:301–308, 2010.

    PubMed  Google Scholar 

  18. Mudd, J. O., J. D. Cuda, M. Halushka, K. A. Soderlund, J. V. Conte, and S. D. Russell. Fusion of aortic valve commissures in patients supported by a continuous axial flow left ventricular assist device. J. Heart Lung Transplant. 27:1269–1274, 2008.

    Article  PubMed  Google Scholar 

  19. Nishimura, T., E. Tatsumi, T. Nishinaka, Y. Taenaka, and H. Takano. Aortic reaction to prolonged nonpulsatile left heart bypass. J. Artif. Organs 2:141–145, 1999.

    Article  Google Scholar 

  20. Ootaki, C., C. Yamashita, Y. Ootaki, et al. Reduced pulsatility induces periarteritis in kidney: role of the local renin-angiotensin system. J. ThoracCardiovasc. Surg. 136:150–158, 2008.

    Google Scholar 

  21. Sandner, S. E., D. Zimpfer, P. Zrunek, et al. Renal function after implantation of continuous versus pulsatile flow left ventricular assist devices. J. Heart Lung Transplant. 27:469–473, 2008.

    Article  PubMed  Google Scholar 

  22. Schampaert, S., K. A. Pennings, M. J. van de Molengraft, N. H. Pijls, F. N. van de Vosse, and M. C. Rutten. A mock circulation model for cardiovascular device evaluation. Physiol. Meas. 35:687–702, 2014.

    Article  CAS  PubMed  Google Scholar 

  23. Schima, H., M. R. Muller, D. Papantonis, C. Schlusche, L. Huber, C. Schmidt, W. Trubel, H. Thoma, U. Losert, and E. Wolner. Minimization of hemolysis in centrifugal blood pump: Influence of different geometries. Int. J. Artif. Organs. 16:521–529, 1992.

    Google Scholar 

  24. Shi, Y., P. V. Lawford, and D. R. Hose. Numerical modeling of hemodynamics with pulsatile impeller pump support. Ann. Biomed. Eng. 38:2621–2634, 2010.

    Article  PubMed  Google Scholar 

  25. Slaughter, M. S. Long-term continuous flow left ventricular assist device support and end-organ function: prospects for destination therapy. J. Card. Surg. 25:490–494, 2010.

    Article  PubMed  Google Scholar 

  26. Thubrikar, M. The Aortic Valve. Boca Raton: CRC Press Inc, 1990; (221 pp).

    Google Scholar 

  27. Thubrikar, M. J., J. Aouad, and S. P. Nolan. Comparison of the in vivo and in vitro mechanical properties of aortic valve leaflets. J. Thorac. Cardiovasc. Surg. 92:29–36, 1986.

    CAS  PubMed  Google Scholar 

  28. Tuzun, E., I. D. Gregoric, J. L. Gonger, et al. The effect of intermittent low speed mode upon aortic valve opening in calves supported with a Jarvik 2000 axial flow device. ASAIO J. 51:139–143, 2005.

    Article  PubMed  Google Scholar 

  29. Tuzun, E., M. Rutten, M. Dat, F. van de Vosse, C. Kadipasaoglu, and B. de Mol. Continuous-flow cardiax assistance: effects on aortic valve function in a mock loop. J. Surg. Res. 171:443–447, 2011.

    Article  PubMed  Google Scholar 

  30. Tuzun, E., K. Pennings, S. van Tuijl, J. de Hart, M. Stijnen, F. van de Vosse, B. de Mol, and M. Rutten. Assessment of aortic valve pressure overload and leaflet functions in an ex vivo beating heart loaded with a continuous flow cardiac assist device. Eur. J. Cardiothorac. Surg. 45:377–383, 2014.

    Article  PubMed  Google Scholar 

  31. Ündar, A. Benefits of pulsatile flow during and after cardiopulmonary bypass procedures. Artif. Organs 29:688–690, 2005.

    Article  PubMed  Google Scholar 

  32. Vandenberghe, S., P. Segers, J. F. Antaki, B. Meyns, and P. R. Verdonck. Hemodynamic modes of ventricular assist with a rotary blood pump: continuous, pulsatile, and failure. ASAIO J. 51:711–718, 2005.

    Article  PubMed  Google Scholar 

  33. Vandenberghe, S., P. Segers, P. Steendijk, B. Meyns, R. A. Dion, J. F. Antaki, and P. R. Verdonck. Modeling ventricular function during cardiac assist: does time-varying elastance work? ASAIO J. 52:4–8, 2006.

    Article  PubMed  Google Scholar 

  34. Wilson, E., Q. Mai, K. Sudhir, R. H. Weiss, and H. E. Ives. Mechanical strain induces growth of vascular smooth muscle cells via autocrine action of PDGF. J. Cell Biol. 123:741–747, 1993.

    Article  CAS  PubMed  Google Scholar 

  35. Zamarripa-Garcia, M. A., L. A. Enriquez, W. Dembitsky, et al. The effect of aortic valve incompetence on the hemodynamics of a continuous flow ventricular assist device in a mock circulation. ASAIO J. 54:237–244, 2008.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study is part of the MeDDiCA project and funded under FP7, People Programme, Marie Curie Actions. Grant agreement PITN-GA-2009-238113.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selim Bozkurt.

Additional information

Associate Editor Ender A Finol oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 966 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozkurt, S., van de Vosse, F.N. & Rutten, M.C.M. Aortic Valve Function Under Support of a Left Ventricular Assist Device: Continuous vs. Dynamic Speed Support. Ann Biomed Eng 43, 1727–1737 (2015). https://doi.org/10.1007/s10439-014-1204-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1204-4

Keywords

Navigation