Skip to main content
Log in

Automated Algorithm for GI Spike Burst Detection and Demonstration of Efficacy in Ischemic Small Intestine

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We present a novel, fully-automated gastrointestinal spike burst detection algorithm. Following pre-processing with SALPA (Wagenaar and Potter, J. Neurosci. Methods 120:113–120, 2002) and a Savitzky–Golay filter to remove unwanted low and high frequency components, candidate spike waveforms are detected utilizing the non-linear energy operator. Candidate waveforms are classified as spikes or artifact by a support vector machine. The new method achieves highly satisfactory performance with >90% sensitivity and positive prediction value. We also demonstrate an application of the new method to detect changes in spike rate and spatial propagation patterns upon induction of mesenteric ischemia in the small intestine. Spike rates were observed to transiently increase 10–20 fold for a duration of ≈600 s, relative to baseline conditions. In ischemic conditions, spike activity propagation patterns included retrograde-longitudinal wavefronts with occasional spontaneous conduction blocks, as well as self-terminating concentric-circumferential wavefronts. Longitudinal and circumferential velocities were 6.8–8.0 cm/s and 18.7 cm/s, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Angeli, T. R., G. O’Grady, N. Paskaranandavadivel, J. C. Erickson, P. Du, A. J. Pullan, I. P. Bissett, and L. K. Cheng. Experimental and automated analysis techniques for high-resolution electrical mapping of small intestine slow wave activity. J. Neurogastroenterol. Motil. 19(2):179–191, 2013.

    Article  PubMed  Google Scholar 

  2. Bozler, E. The relation of the action potentials to mechanical activity in intestinal muscle. Am. J. Physiol. 146:496–501, 1946.

    PubMed  CAS  Google Scholar 

  3. Brookes, S., B. Chen, M. Costa, and C. Humphreys. Initiation of peristalsis by circumferential stretch of flat sheets of guinea-pig ileum. J. Physiol. 516:525–538, 1999.

    Article  PubMed  CAS  Google Scholar 

  4. Cabot, R., and S. Kohatsu. The effects of ischemia on the electrical and contractile activities of the canine small intestine. Am. J. Surg. 136:242–246, 1978.

    Article  PubMed  CAS  Google Scholar 

  5. Chou, C. Relationship between intestinal blood flow and motility. Annu. Rev. Phys. 44:29–42, 1982.

    Article  CAS  Google Scholar 

  6. Cortes, C., and V. Vapnik. Support-vector networks. Mach. Learn. 20:273–297, 1995.

    Google Scholar 

  7. Du, P., G. O’Grady, J. Egbuji, W. Lammers, D. Budgett, P. Nielsen, J. Windsor, A. Pullan, and L. Cheng. High-resolution mapping of in vivo gastrointestinal slow wave activity using flexible printed circuit board electrodes: methodology and validation. Ann. Biomed. Eng. 37:839–846, 2009.

    Article  PubMed  Google Scholar 

  8. Egbuji, J., G. O’Grady, P. Du, L. Cheng, W. Lammers, J. Windsor, and A. Pullan. Origin, propagation and regional characteristics of porcine gastric slow wave activity determined by high-resolution mapping. Neurogastroenterol. Motil. 22:e292–e300, 2010.

    Article  PubMed  CAS  Google Scholar 

  9. Erickson, J., G. O’Grady, P. Du, J. Egbuji, A. Pullan, and L. Cheng. Automated gastric slow wave cycle partitioning and visualization fo high-resolution activation time maps. Ann. Biomed. Eng. 39:469–483, 2011.

    Article  PubMed  Google Scholar 

  10. Erickson, J., G. O’Grady, P. Du, C. Obioha, W. Qiao, W. Richards, L. Bradshaw, A. Pullan, and L. Cheng. Falling-edge, variable threshold (FEVT) method for the automated detection of gastric slow wave events in high-resolution serosal electrode recordings. Ann. Biomed. Eng. 38:1511–1529, 2010.

    Article  PubMed  Google Scholar 

  11. Faezipour, M., T. Tiwari, A. Saeed, M. Nourani, and L. Tamil. Wavelet-based denoising and beat detection of ecg signal. In: IEEE Life Science Systems and Applications Workshop, 2009, pp. 100–103.

  12. Fleckenstein, P., and A. Øigaard. Electrical spike activity in the human small intestine. Digest. Dis. Sci. 23:776–780, 1978.

    Article  CAS  Google Scholar 

  13. Gonella, J. Modifications of electrical activity of the rabbit duodenum longitudinal muscle after contractions of the circular muscle. Digest. Dis. Sci. 17:327–332, 1972.

    Article  CAS  Google Scholar 

  14. Groh, W., I. Takahashi, S. Sarna, W. Dodds, and W. Hogan. Computerized analysis of spike-burst activity of the upper gastrointestinal tract. Digest. Dis. Sci. 29:422–426, 1984.

    Article  PubMed  CAS  Google Scholar 

  15. Hennig, G., M. Costa, B. Chen, and S. Brookes. Quantitative analysis of peristalsis in the guinea-pig small intestine using spatio-temporal maps. J. Physiol. 517:575–590, 1999.

    Article  PubMed  CAS  Google Scholar 

  16. Hsu, C., C. Chang, C. Lin, et al. A Practical Guide to Support Vector Classification, Department of Computer Science, National Taiwan University, 2003.

  17. Huizinga, J., and W. Lammers. Gut peristalsis is governed by a multitude of cooperating mechanisms. Am. J. Physiol. Gastrointest. Liver Physiol. 296:G1–G8, 2009.

    Article  PubMed  CAS  Google Scholar 

  18. Kaiser, J. Some useful properties of teager’s energy operators. In: 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-93, Vol. 3, 1993, pp. 149–152.

  19. Kim, K.,and S. Kim. Neural spike sorting under nearly 0-db signal-to-noise ratio using nonlinear energy operator and artificial neural-network classifier. IEEE Trans. Biomed. Eng. 47:1406–1411, 2000.

    Article  PubMed  CAS  Google Scholar 

  20. Lammers, W., A. al Kais, S. Singh, K. Arafat, and T. elSharkawy. Multielectrode mapping of slow-wave activity in the isolated rabbit duodenum. J. Appl. Physiol. 74:1454–1461, 1993.

    PubMed  CAS  Google Scholar 

  21. Lammers, W., B. Michiels, J. Voeten, L. VerDonck, and J. Schuurkes. Mapping slow waves and spikes in chronically instrumented conscious dogs: automated on-line electrogram analysis. Med. Biol. Eng. Comput. 46:121–129, 2008.

    Article  PubMed  Google Scholar 

  22. Lammers, W., and J. Slack. Of slow waves and spike patches. Physiology 16:138–144, 2001.

    Google Scholar 

  23. Lammers, W., B. Stephen, and S. Karam. Functional reentry and circus movement arrhythmias in the small intestine of normal and diabetic rats. Am. J. Physiol. Gastrointest. Liver Physiol. 302:G684–G689, 2012.

    Article  PubMed  CAS  Google Scholar 

  24. Lammers, W., L. VerDonck, J. Schuurkes, and B. Stephen. Longitudinal and circumferential spike patches in the canine small intestine in vivo. Am. J. Physiol. Gastrointest. Liver Physiol. 285:G1014–G1027, 2003.

    PubMed  CAS  Google Scholar 

  25. Lammers, W. J., B. Stephen, and J. R. Slack. Similarities and differences in the propagation of slow waves and peristaltic waves. Am. J. Physiol. Gastrointest. Liver Physiol. 283:G778–G786, 2002.

    PubMed  CAS  Google Scholar 

  26. Meissner, A., K. Bowes, and S. Sarna. Effects of ambient and stagnant hypoxia on the mechanical and electrical activity of the canine upper jejunum. Can. J. Surg. 19:316–321, 1976.

    PubMed  CAS  Google Scholar 

  27. Morrison, P., B. Miedema, L. Kohler, and K. Kelly. Electrical dysrhythmias in the roux jejunal limb: cause and treatment. Am. J. Surg. 160:252–256, 1990.

    Google Scholar 

  28. Mukhopadhyay, S., and G. Ray. A new interpretation of nonlinear energy operator and its efficacy in spike detection. IEEE Trans. Biomed. Eng. 45:180–187, 1998.

    Article  PubMed  CAS  Google Scholar 

  29. Nenadic, Z., and J. Burdick, 2005. Spike detection using the continuous wavelet transform. IEEE Trans. Biomed. Eng. 52:74–87

    Article  Google Scholar 

  30. Obeid, I., and P. Wolf. Evaluation of spike-detection algorithms for a brain–machine interface application. IEEE Trans. Biomed. Eng. 51:905–911, 2004.

    Article  PubMed  Google Scholar 

  31. O’Grady, G. Gastrointestinal extracellular electrical recordings: fact or artifact? Neurogastroenterol Motil. 24:1–6, 2012.

    Google Scholar 

  32. O’Grady, G., T. Angeli, P. Du, C. Lahr, W. Lammers, J. Windsor, T. Abell, G. Farrugia, A. Pullan, and L. Cheng. Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping. Gastroenterology 143(3):589–598.e1–3, 2012.

    Google Scholar 

  33. Oldenburg, A., L. L. Lau, and T.J. Rodenberg. Acute mesenteric ischemia: a clinical review. Arch. Intern. Med. 164:1054–1062, 2004.

    Article  PubMed  Google Scholar 

  34. Paskaranandavadivel, N., L. Cheng, P. Du, G. O’Grady, and A. Pullan. Improved signal processing techniques for the analysis of high resolution serosal slow wave activity in the stomach. In: IEEE Engineering in Medicine and Biology Society, 2011, pp. 1737–1740.

  35. Paskaranandavadivel, N., G. O’Grady, P. Du, and L. K Cheng. Comparison of filtering methods for extracellular gastric slow wave recordings. Neurogastroenterol. Motil. 25(1):79–83, 2012.

    Google Scholar 

  36. Ponti, F., A. Bonabello, L. D’Angelo, G. Frigo, and A. Crema. Quantitative analysis of intestinal electrical spike activity by a new computerized method. Int. J Biol. Med. Comput. 22:51–64, 1988.

    Article  Google Scholar 

  37. Reaz, M., M. Hussain, and F. Mohd-Yasin. Techniques of EMG signal analysis: detection, processing, classification and applications. Biol. Proced. Online 8:11–35, 2006.

    Article  Google Scholar 

  38. Richards, W., C. Garrard, S. Allos, L. Bradshaw, D. Staton, and J. Wikswo, Jr. Noninvasive diagnosis of mesenteric ischemia using a SQUID magnetometer. Ann. Surg. 221:696–705, 1995.

    Google Scholar 

  39. Sanders, K. Regulation of smooth muscle excitation and contraction. Neurogastroenterol Motil. 20:39–53, 2008.

    Article  PubMed  CAS  Google Scholar 

  40. Savitzky, A., and M. Golay. Smoothing and differentiation of data by simplified least squares procedures. Analyt. Chem. 36:1627–1639, 1964.

    Article  CAS  Google Scholar 

  41. Seidel, S., S. Hegde, L. Bradshaw, J. Ladipo, and W. Richards. Intestinal tachyarrhythmias during small bowel ischemia. Am. J. Physiol. Gastrointest. Liver Physiol. 277:G993–G999, 1999.

    CAS  Google Scholar 

  42. Seidel, S. A., L. A. Bradshaw, J. Ladipo, J. P. Wikswo, W. O. Richards. Noninvasive detection of ischemic bowel. J. Vasc. Surg. 30:309–319, 1999.

    Article  PubMed  CAS  Google Scholar 

  43. Summers, R., J. Cramer, and A. Flatt. Computerized analysis of spike burst activity in the small intestine. IEEE Trans. Biomed. Eng. 29(5):309–314, 1982.

    Google Scholar 

  44. Szurszewski, J. A 100-year perspective on gastrointestinal motility. Am. J. Physiol. Gastrointest. Liver Physiol. 274:G447–G453, 1998.

    CAS  Google Scholar 

  45. Wagenaar, D., and S. Potter. Real-time multi-channel stimulus artifact suppression by local curve fitting. J. Neurosci. Methods 120:113–120,2002.

    Article  PubMed  Google Scholar 

  46. Wang, Z., and J. Chen. Blind separation of slow waves and spikes from gastrointestinal myoelectrical recordings. IEEE Trans. Inf. Technol. Biomed. 5:133–137, 2001.

    Article  PubMed  CAS  Google Scholar 

  47. Yassi, R., G. O’Grady, N. Paskaranandavadivel, P. Du, T. Angeli, A. Pullan, L. Cheng, and J. Erickson. The gastrointestinal electrical mapping suite (GEMS): software for analyzing and visualizing high-resolution (multi-electrode) recordings in spatiotemporal detail. BMC Gastroenterol. 12:60, 2012.

    Google Scholar 

  48. Ye-Lin, Y., J. Garcia-Casado, J. Martinez-de Juan, G. Prats-Boluda, and J. Ponce. The detection of intestinal spike activity on surface electroenterograms. Phys. Med. Biol. 55:663–680, 2010.

    Google Scholar 

Download references

Acknowledgments

JCE and RVC gratefully acknowledge the financial support of the Washington and Lee University Lenfest Research and Robert E. Lee summer scholar grants. Financial support for the animal surgeries and data acquisition was provided by NIH Grants RO1 DK64775 and RO1 58197. The authors gratefully acknowledge the laboratories of William O Richards and L Alan Bradshaw for sharing some of the data sets analyzed in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan C. Erickson.

Additional information

Associate Editor Nathalie Virag oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 42 kb)

Supplementary material 2 (AVI 2620 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erickson, J.C., Velasco-Castedo, R., Obioha, C. et al. Automated Algorithm for GI Spike Burst Detection and Demonstration of Efficacy in Ischemic Small Intestine. Ann Biomed Eng 41, 2215–2228 (2013). https://doi.org/10.1007/s10439-013-0812-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0812-8

Keywords

Navigation