Skip to main content

Advertisement

Log in

Artery Buckling: New Phenotypes, Models, and Applications

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Arteries are under significant mechanical loads from blood pressure, flow, tissue tethering, and body movement. It is critical that arteries remain patent and stable under these loads. This review summarizes the common forms of buckling that occur in blood vessels including cross-sectional collapse, longitudinal twist buckling, and bent buckling. The phenomena, model analyses, experimental measurements, effects on blood flow, and clinical relevance are discussed. It is concluded that mechanical buckling is an important issue for vasculature, in addition to wall stiffness and strength, and requires further studies to address the challenges. Studies of vessel buckling not only enrich vascular biomechanics but also have important clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Back, L. H., M. R. Back, E. Y. Kwack, and D. W. Crawford. Flow measurements in a human femoral artery model with reverse lumen curvature. J. Biomech. Eng. 110(4):300–309, 1988.

    Article  PubMed  CAS  Google Scholar 

  2. Back, L. H., T. K. Liem, E. Y. Kwack, and D. W. Crawford. Flow measurements in a highly curved atherosclerotic coronary artery cast of man. J. Biomech. Eng. 114(2):232–240, 1992.

    Article  PubMed  CAS  Google Scholar 

  3. Barton, J. W., and M. T. Margolis. Rotational obstructions of the vertebral artery at the atlantoaxial joint. Neuroradiology 9(3):117–120, 1975.

    Article  PubMed  CAS  Google Scholar 

  4. Beris, A. E., P. N. Soucacos, and A. S. Touliatos. Experimental evaluation of the length of microvenous grafts under normal tension. Microsurgery 13(4):195–199, 1992.

    Article  PubMed  CAS  Google Scholar 

  5. Bertram, C. D. Flow-induced oscillation of collapsed tubes and airway structures. Respir. Physiol. Neurobiol. 163(1–3):256–265, 2008.

    Article  PubMed  Google Scholar 

  6. Bertram, C. D., and T. J. Pedley. A mathematical model of unsteady collapsible tube behaviour. J. Biomech. 15(1):39–50, 1982.

    Article  PubMed  CAS  Google Scholar 

  7. Bilgin, S. S., M. Topalan, W. Y. Ip, and S. P. Chow. Effect of torsion on microvenous anastomotic patency in a rat model and early thrombolytic phenomenon. Microsurgery 23(4):381–386, 2003.

    Article  PubMed  Google Scholar 

  8. Brangwynne, C. P., F. C. MacKintosh, S. Kumar, N. A. Geisse, J. Talbot, L. Mahadevan, K. K. Parker, D. E. Ingber, and D. A. Weitz. Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J. Cell Biol. 173(5):733–741, 2006.

    Article  PubMed  CAS  Google Scholar 

  9. Brook, B. S., and T. J. Pedley. A model for time-dependent flow in (giraffe jugular) veins: uniform tube properties. J. Biomech. 35(1):95–107, 2002.

    Article  PubMed  CAS  Google Scholar 

  10. Brossollet, L. J., and R. P. Vito. An alternate formulation of blood vessel mechanics and the meaning of the in vivo property. J. Biomech. 28(6):679–687, 1995.

    Article  PubMed  CAS  Google Scholar 

  11. Chen, X., and J. Yin. Buckling patterns of thin films on curved compliant substrates with applications to morphogenesis and three-dimensional micro-fabrication. Soft Matter 6(22):5667–5680, 2010.

    Article  CAS  Google Scholar 

  12. Cheng, G. C., H. M. Loree, R. D. Kamm, M. C. Fishbein, and R. T. Lee. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circulation 87(4):1179–1187, 1993.

    Article  PubMed  CAS  Google Scholar 

  13. Chesnutt, J. K. W., and H. C. Han. Tortuosity triggers platelet activation and thrombus formation in microvessels. J. Biomech. Eng. 133:121004-1-11, 2011.

    Google Scholar 

  14. Chow, K. W., and C. C. Mak. A simple model for the two dimensional blood flow in the collapse of veins. J. Math. Biol. 52(6):733–744, 2006.

    Article  PubMed  CAS  Google Scholar 

  15. Costa, K. D., W. J. Hucker, and F. C. Yin. Buckling of actin stress fibers: a new wrinkle in the cytoskeletal tapestry. Cell Motil. Cytoskeleton 52(4):266–274, 2002.

    Article  PubMed  Google Scholar 

  16. Coucke, P. J., A. Willaert, M. W. Wessels, B. Callewaert, N. Zoppi, J. De Backer, J. E. Fox, G. M. Mancini, M. Kambouris, R. Gardella, F. Facchetti, P. J. Willems, R. Forsyth, H. C. Dietz, S. Barlati, M. Colombi, B. Loeys, and A. De Paepe. Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nat. Genet. 38(4):452–457, 2006.

    Article  PubMed  CAS  Google Scholar 

  17. Datir, P., A. Y. Lee, S. D. Lamm, and H. C. Han. Effects of geometric variations on the buckling of arteries. Int. J. Appl. Mech. 3(2):385–406, 2011.

    Article  PubMed  Google Scholar 

  18. Dawson, D. L., J. C. Hellinger, T. T. Terramani, S. Najibi, L. G. Martin, and A. B. Lumsden. Iliac artery kinking with endovascular therapies: technical considerations. J. Vasc. Interv. Radiol. 13(7):729–733, 2002.

    Article  PubMed  Google Scholar 

  19. Del Corso, L., D. Moruzzo, B. Conte, M. Agelli, A. M. Romanelli, F. Pastine, M. Protti, F. Pentimone, and G. Baggiani. Tortuosity, kinking, and coiling of the carotid artery: expression of atherosclerosis or aging? Angiology 49(5):361–371, 1998.

    Article  PubMed  Google Scholar 

  20. Dobrin, P. B., D. Hodgett, T. Canfield, and R. Mrkvicka. Mechanical determinants of graft kinking. Ann. Vasc. Surg. 15(3):343–349, 2001.

    Article  PubMed  CAS  Google Scholar 

  21. Downie, S. P., S. M. Raynor, D. N. Firmin, N. B. Wood, S. A. Thom, A. D. Hughes, K. H. Parker, J. H. Wolfe, and X. Y. Xu. Effects of elastic compression stockings on wall shear stress in deep and superficial veins of the calf. Am. J. Physiol. Heart Circ. Physiol. 294(5):H2112–H2120, 2008.

    Article  PubMed  CAS  Google Scholar 

  22. Downing, J. M., and D. N. Ku. Effects of frictional losses and pulsatile flow on the collapse of stenotic arteries. J. Biomech. Eng. 119(3):317–324, 1997.

    Article  PubMed  CAS  Google Scholar 

  23. Drzewiecki, G., S. Field, I. Moubarak, and J. K. Li. Vessel growth and collapsible pressure-area relationship. Am. J. Physiol. 273(4 Pt 2):H2030–H2043, 1997.

    PubMed  CAS  Google Scholar 

  24. Drzewiecki, G., and J. J. Pilla. Noninvasive measurement of the human brachial artery pressure-area relation in collapse and hypertension. Ann. Biomed. Eng. 26(6):965–974, 1998.

    Article  PubMed  CAS  Google Scholar 

  25. Elad, D., M. Sahar, J. M. Avidor, and S. Einav. Steady flow through collapsible tubes: measurements of flow and geometry. J. Biomech. Eng. 114(1):84–91, 1992.

    Article  PubMed  CAS  Google Scholar 

  26. Endean, E. D., S. DeJong, and P. B. Dobrin. Effect of twist on flow and patency of vein grafts. J. Vasc. Surg. 9(5):651–655, 1989.

    PubMed  CAS  Google Scholar 

  27. Ertepinar, A., and A. S. D. Wang. Torsional buckling of an elastic thick-walled tube made of rubber-like material. Int. J. Solids Struct. 11(3):329–337, 1975.

    Article  Google Scholar 

  28. Flaherty, J. E., J. B. Keller, and S. I. Rubinow. Post buckling behavior of elastic tubes and rings with opposite sides in contact. Siam. J. Appl. Math. 23(4):446–455, 1972.

    Article  Google Scholar 

  29. Flugge, W. Stress in Shells. Vol. Chaps. 2 & 8. New York: Springer-Verlag, 1973.

  30. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues (2nd ed.). New York: Springer Verlag, 1993.

    Google Scholar 

  31. Fung, Y. C. Biomechanics: Circulation, Chap. 4 (2nd ed.). New York: Springer, 1997.

    Book  Google Scholar 

  32. Garcia, J., and H. C. Han. The stability of veins under torsion. In: ASME Summer Bioeng. Conf. 2012. Fajardo, Puerto Rico.

  33. Garcia, J. R., S. D. Lamm, and H. C. Han. Twist buckling behavior of arteries. Biomech. Model. Mechanobiol. 2012. doi:10.1007/s10237-012-0453-0.

  34. Garcia, J., S. D. Lamm, and H. C. Han. Buckling behavior of arteries under torsion. In: ASME Summer Bioeng. Conf. 2011. Farmington, PA.

  35. Gooding, C. A., and G. K. Stimac. Jugular vein obstruction caused by turning of the head. AJR Am. J. Roentgenol. 142(2):403–406, 1984.

    Article  PubMed  CAS  Google Scholar 

  36. Gorenberg, M., H. Rotztein, and A. Marmor. A new noninvasive device for measuring central ejection dP/dt mathematical foundation of cardiac dP/dt measurement using a model for a collapsible artery. Cardiovasc. Eng. 9(1):27–31, 2009.

    PubMed  Google Scholar 

  37. Green, A. E., R. S. Rivlin, and R. T. Shield. General theory of small elastic deformations superposed on finite elastic deformations. Proc. R. Soc. Lond. A Math. Phys. Sci. 211(1104):128–154, 1952.

    Article  Google Scholar 

  38. Grotberg, J. B., and O. E. Jensen. Biofluid mechanics in flexible tubes. Annu. Rev. Fluid Mech. 36:121–147, 2004.

    Article  Google Scholar 

  39. Hamadiche, M., N. Kizilova, and M. Gad-El-Hak. Suppression of absolute instabilities in the flow inside a compliant tube. Commun. Numer. Methods Eng. 25(5):505–531, 2009.

    Article  Google Scholar 

  40. Han, H. C. A biomechanical model of artery buckling. J. Biomech. 40(16):3672–3678, 2007.

    Article  PubMed  Google Scholar 

  41. Han, H. C. Nonlinear buckling of blood vessels: a theoretical study. J. Biomech. 41(12):2708–2713, 2008.

    Article  PubMed  Google Scholar 

  42. Han, H. C. Blood vessel buckling within soft surrounding tissue generates tortuosity. J. Biomech. 42(16):2797–2801, 2009.

    Article  PubMed  Google Scholar 

  43. Han, H. C. The theoretical foundation for artery buckling under internal pressure. J. Biomech. Eng. 131(12):124501, 2009.

    Article  PubMed  Google Scholar 

  44. Han, H. C. Determination of the critical buckling pressure of blood vessels using the energy approach. Ann. Biomed. Eng. 39(3):1032–1040, 2011.

    Article  PubMed  Google Scholar 

  45. Han, H. C. Twisted blood vessels: symptoms, etiology and biomechanical mechanisms. J. Vasc. Res. 49(3):185–197, 2012.

    Article  PubMed  Google Scholar 

  46. Han, H. C., and Y. C. Fung. Longitudinal strain of canine and porcine aortas. J. Biomech. 28(5):637–641, 1995.

    Article  PubMed  CAS  Google Scholar 

  47. Han, H. C., and Y. C. Fung. Direct measurement of transverse residual strains in aorta. Am. J. Physiol. 270(2 Pt 2):H750–H759, 1996.

    PubMed  CAS  Google Scholar 

  48. Han, H. C., and Z. Jiang. Vascular remodeling under axial tension. J. Med. Biomech. [Chinese] 27(1):7–12, 2012.

    Google Scholar 

  49. Hayreh, S. S., G. E. Servais, and P. S. Virdi. Retinal arteriolar changes in malignant arterial hypertension. Ophthalmologica 198(4):178–196, 1989.

    Article  PubMed  CAS  Google Scholar 

  50. Hrousis, C. A., B. J. Wiggs, J. M. Drazen, D. M. Parks, and R. D. Kamm. Mucosal folding in biologic vessels. J. Biomech. Eng. 124(4):334–341, 2002.

    Article  PubMed  Google Scholar 

  51. Huang, X., H. Y. Yuan, K. J. Hsia, and S. L. Zhang. Coordinated buckling of thick multi-walled carbon nanotubes under uniaxial compression. Nano Res. 3(1):32–42, 2010.

    Article  CAS  Google Scholar 

  52. Humphrey, J. D. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. Vol. Chaps. 8 & 9. New York: Springer, 2002.

  53. Izquierdo, R., P. B. Dobrin, K. D. Fu, F. Park, and G. Galante. The effect of twist on microvascular anastomotic patency and angiographic luminal dimensions. J. Surg. Res. 78(1):60–63, 1998.

    Article  PubMed  CAS  Google Scholar 

  54. Izzo, Jr., J. L., D. Levy, and H. R. Black. Clinical Advisory Statement. Importance of systolic blood pressure in older Americans. Hypertension 35(5):1021–1024, 2000.

    Article  PubMed  Google Scholar 

  55. Jackson, Z. S., D. Dajnowiec, A. I. Gotlieb, and B. L. Langille. Partial off-loading of longitudinal tension induces arterial tortuosity. Arterioscler. Thromb. Vasc. Biol. 25(5):957–962, 2005.

    Article  PubMed  CAS  Google Scholar 

  56. Joo, W. J., M. Fukui, K. Kooguchi, M. Sakaguchi, and T. Shinzato. Transcutaneous pressure at which the internal jugular vein is collapsed on ultrasonic imaging predicts easiness of the venous puncture. J. Anesth. 25(2):308–311, 2011.

    Article  PubMed  Google Scholar 

  57. Kaplan, A. D., A. J. Jaffa, I. E. Timor, and D. Elad. Hemodynamic analysis of arterial blood flow in the coiled umbilical cord. Reprod. Sci. 17(3):258–268, 2010.

    Article  PubMed  Google Scholar 

  58. Klein, Y., E. Efrati, and E. Sharon. Shaping of elastic sheets by prescription of non-Euclidean metrics. Science 315(5815):1116–1120, 2007.

    Article  PubMed  CAS  Google Scholar 

  59. Kuether, T. A., G. M. Nesbit, W. M. Clark, and S. L. Barnwell. Rotational vertebral artery occlusion: a mechanism of vertebrobasilar insufficiency. Neurosurgery 41(2):427–432, 1997.

    Article  PubMed  CAS  Google Scholar 

  60. Kylstra, J. A., T. Wierzbicki, M. L. Wolbarsht, M. B. Landers, III, and E. Stefansson. The relationship between retinal vessel tortuosity, diameter, and transmural pressure. Graefes Arch. Clin. Exp. Ophthalmol. 224(5):477–480, 1986.

    Article  PubMed  CAS  Google Scholar 

  61. Langille, B. L. Arterial remodeling: relation to hemodynamics. Can. J. Physiol. Pharmacol. 74(7):834–841, 1996.

    Article  PubMed  CAS  Google Scholar 

  62. Lee, A. Y. Determining the critical buckling of blood vessels through modeling and in vitro experiments. In: Biomedical Engineering 2011. San Antonio, TX: University of Texas at San Antonio.

  63. Lee, A. Y., and H. C. Han. A thin-walled nonlinear model for vein buckling. Cardiovasc. Eng. Tech. 1(4):282–289, 2010.

    Article  Google Scholar 

  64. Lee, A. Y., B. Han, S. D. Lamm, C. A. Fierro, and H. C. Han. Effects of elastin degradation and surrounding matrix support on artery stability. Am. J. Physiol. Heart Circ. Physiol. 302(4):H873–H884, 2012.

    Article  PubMed  CAS  Google Scholar 

  65. Lehoux, S., and A. Tedgui. Cellular mechanics and gene expression in blood vessels. J. Biomech. 36(5):631–643, 2003.

    Article  PubMed  Google Scholar 

  66. Li, B., Y. P. Cao, and X. Q. Feng. Growth and surface folding of esophageal mucosa: a biomechanical model. J. Biomech. 44(1):182–188, 2011.

    Article  PubMed  Google Scholar 

  67. Li, B., Y. P. Cao, X. Q. Feng, and H. Gao. Mechanics of morphological instabilities and surface wrinkling in soft materials: a review. Soft Matter 8:5728–5745, 2012.

    Article  CAS  Google Scholar 

  68. Liao, D., J. Zhao, J. Yang, and H. Gregersen. The oesophageal zero-stress state and mucosal folding from a GIOME perspective. World J. Gastroenterol. 13(9):1347–1351, 2007.

    PubMed  Google Scholar 

  69. Liu, Q., and H. C. Han. Mechanical buckling of artery under pulsatile pressure. J. Biomech. 45(7):1192–1198, 2012.

    Article  PubMed  Google Scholar 

  70. Liu, Q., and H. C. Han. Mechanical buckling of arterioles in collateral development. J. Theor. Biol. 316C:42–48, 2013.

    Article  Google Scholar 

  71. Liu, Q., D. Mirc, and B. M. Fu. Mechanical mechanisms of thrombosis in intact bent microvessels of rat mesentery. J. Biomech. 41(12):2726–2734, 2008.

    Article  PubMed  Google Scholar 

  72. Martinez, R., C. A. Fierro, P. K. Shireman, and H. C. Han. Mechanical buckling of veins under internal pressure. Ann. Biomed. Eng. 38(4):1345–1353, 2010.

    Article  PubMed  Google Scholar 

  73. Marzo, A., X. Y. Luo, and C. D. Bertram. Three-dimensional collapse and steady flow in thick-walled flexible tubes. J. Fluids Struct. 20(6):817–835, 2005.

    Article  Google Scholar 

  74. Mitchell, R. F. Tubing buckling—the state of the art. SPE Drill Complet. 23(4):361–370, 2008.

    Google Scholar 

  75. Nerem, R. M. Role of mechanics in vascular tissue engineering. Biorheology 40(1–3):281–287, 2003.

    PubMed  Google Scholar 

  76. Nichols, W.W., and M. F. O’Rourke. McDonald’s blood flow in arteries: Theoretical, experimental, and clinical principles, Chap. 16 (4th ed.). London: Arnold Publisher, 1998.

  77. Northcutt, A., and H.C. Han. Finite element analysis of buckling of arteries with aneurysms. In: ASME Summer Bioeng. Conf. 2009. Lake Tahoe, CA.

  78. Northcutt, A., P. Datir, and H. C. Han. Computational simulations of buckling of oval and tapered arteries. In: Tributes to Yuan-Cheng Fung on His 90th Birthday, edited by S. Chien, et al. New Jersey: World Scientific Publishing, 2009.

  79. Pancera, P., M. Ribul, B. Presciuttini, and A. Lechi. Prevalence of carotid artery kinking in 590 consecutive subjects evaluated by Echocolordoppler. Is there a correlation with arterial hypertension? J. Intern. Med. 248(1):7–12, 2000.

    Article  PubMed  CAS  Google Scholar 

  80. Pao, Y. C., J. T. Lu, and E. L. Ritman. Bending and twisting of an invivo coronary-artery at a bifurcation. J. Biomech. 25(3):287–295, 1992.

    Article  PubMed  CAS  Google Scholar 

  81. Pedley, T. J., and X. Y. Luo. Modelling flow and oscillations in collapsible tubes. Theoret. Comput. Fluid Dyn. 10:277–294, 1998.

    Article  CAS  Google Scholar 

  82. Qiao, A. K., X. L. Guo, S. G. Wu, Y. J. Zeng, and X. H. Xu. Numerical study of nonlinear pulsatile flow in S-shaped curved arteries. Med. Eng. Phys. 26(7):545–552, 2004.

    Article  PubMed  CAS  Google Scholar 

  83. Rachev, A. A theoretical study of mechanical stability of arteries. J. Biomech. Eng. 131(5):051006, 2009.

    Article  PubMed  Google Scholar 

  84. Richman, D. P., R. M. Stewart, J. W. Hutchinson, and V. S. Caviness, Jr. Mechanical model of brain convolutional development. Science 189(4196):18–21, 1975.

    Article  Google Scholar 

  85. Rosenzweig, J., and O. E. Jensen. Capillary-elastic instabilities of liquid-lined lung airways. J. Biomech. Eng. 124(6):650–655, 2002.

    Article  PubMed  CAS  Google Scholar 

  86. Salgarello, M., P. Lahoud, G. Selvaggi, S. Gentileschi, M. Sturla, and E. Farallo. The effect of twisting on microanastomotic patency of arteries and veins in a rat model. Ann. Plast. Surg. 47(6):643–646, 2001.

    Article  PubMed  CAS  Google Scholar 

  87. Schep, G., M. H. M. Bender, G. van de Tempel, P. F. F. Wijn, W. R. de Vries, and B. C. Eikelboom. Detection and treatment of claudication due to functional iliac obstruction in top endurance athletes: a prospective study. Lancet 359(9305):466–473, 2002.

    Article  PubMed  CAS  Google Scholar 

  88. Selvaggi, G., M. Salgarello, E. Farallo, S. Anicic, and L. Formaggia. Effect of torsion on microvenous anastomotic patency in rat model and early thrombolytic phenomenon. Microsurgery 24(5):416–417, 2004.

    Article  PubMed  Google Scholar 

  89. Shapiro, A. H. Steady flow in collapsible tubes. J. Biomech. Eng. 99(3):126–147, 1977.

    Article  Google Scholar 

  90. Shen, H. S., and C. L. Zhang. Torsional buckling and postbuckling of double-walled carbon nanotubes by nonlocal shear deformable shell model. Composite Struct. 92(5):1073–1084, 2010.

    Article  Google Scholar 

  91. Shireman, P. K., and M. P. Quinones. Differential necrosis despite similar perfusion in mouse strains after ischemia. J. Surg. Res. 129(2):242–250, 2005.

    Article  PubMed  Google Scholar 

  92. Stein, P. D., M. S. Hamid, K. Shivkumar, T. P. Davis, F. Khaja, and J. W. Henry. Effects of cyclic flexion of coronary arteries on progression of atherosclerosis. Am. J. Cardiol. 73(7):431–437, 1994.

    Article  PubMed  CAS  Google Scholar 

  93. Stelson, K. A., P. L. Blackshear, Jr., and J. D. Wirtschafter. On the tortuosity of the veins of the retina. Microvasc. Res. 26(1):126–128, 1983.

    Article  PubMed  CAS  Google Scholar 

  94. Szekely, G., and G. I. Csecsei. Anteposition of the internal carotid artery for surgical treatment of kinking. Surg. Neurol. 56(2):124–126, 2001.

    Article  PubMed  CAS  Google Scholar 

  95. Taarnhoj, N. C., I. C. Munch, B. Sander, L. Kessel, J. L. Hougaard, K. Kyvik, T. I. Sorensen, and M. Larsen. Straight versus tortuous retinal arteries in relation to blood pressure and genetics. Br. J. Ophthalmol. 92(8):1055–1060, 2008.

    Article  PubMed  CAS  Google Scholar 

  96. Tang, D., C. Yang, S. Kobayashi, and D. N. Ku. Steady flow and wall compression in stenotic arteries: a three-dimensional thick-wall model with fluid-wall interactions. J. Biomech. Eng. 123(6):548–557, 2001.

    Article  PubMed  CAS  Google Scholar 

  97. Tang, D., C. Yang, S. Kobayashi, J. Zheng, P. K. Woodard, Z. Teng, K. Billiar, R. Bach, and D. N. Ku. 3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis. J. Biomech. Eng. 131(6):061010, 2009.

    Article  PubMed  Google Scholar 

  98. Tang, D. L., C. Yang, H. Walker, S. Kobayashi, and D. N. Ku. Simulating cyclic artery compression using a 3D unsteady model with fluid-structure interactions. Comput. Struct. 80(20–21):1651–1665, 2002.

    Article  Google Scholar 

  99. Tang, D., J. Yang, C. Yang, and D. N. Ku. A nonlinear axisymmetric model with fluid-wall interactions for steady viscous flow in stenotic elastic tubes. J. Biomech. Eng. 121(5):494–501, 1999.

    Article  PubMed  CAS  Google Scholar 

  100. Timoshenko, S. P., and J. M. Gere. Theory of Elastic Stability (2nd ed.). New York: McGraw-Hill, 1963.

    Google Scholar 

  101. Topalan, M., S. S. Bilgin, W. Y. Ip, and S. P. Chow. Effect of torsion on microarterial anastomosis patency. Microsurgery 23(1):56–59, 2003.

    Article  PubMed  Google Scholar 

  102. Valencia, A., and F. Baeza. Numerical simulation of fluid-structure interaction in stenotic arteries considering two layer nonlinear anisotropic structural model. Int. Commun. Heat Mass Transf. 36(2):137–142, 2009.

    Article  Google Scholar 

  103. Van Essen, D. C. A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385(6614):313–318, 1997.

    Article  PubMed  Google Scholar 

  104. Vannix, R. S., E. J. Joergenson, and R. Carter. Kinking of internal carotid-artery—clinical significance and surgical management. Am. J. Surg. 134(1):82–89, 1977.

    Article  PubMed  CAS  Google Scholar 

  105. Vorp, D. A., D. G. Peters, and M. W. Webster. Gene expression is altered in perfused arterial segments exposed to cyclic flexure ex vivo. Ann. Biomed. Eng. 27(3):366–371, 1999.

    Article  PubMed  CAS  Google Scholar 

  106. Wagenseil, J. E., N. L. Nerurkar, R. H. Knutsen, R. J. Okamoto, D. Y. Li, and R. P. Mecham. Effects of elastin haploinsufficiency on the mechanical behavior of mouse arteries. Am. J. Physiol. Heart Circ. Physiol. 289(3):H1209–H1217, 2005.

    Article  PubMed  CAS  Google Scholar 

  107. Waxman, A. M. Blood vessel growth as a problem in morphogenesis: a physical theory. Microvasc. Res. 22(1):32–42, 1981.

    Article  PubMed  CAS  Google Scholar 

  108. Weibel, J., and W. S. Fields. Tortuosity, coiling, and kinking of the internal carotid artery. I. Etiology and radiographic anatomy. Neurology 15:7–18, 1965.

    Article  PubMed  CAS  Google Scholar 

  109. Wiggs, B. R., C. A. Hrousis, J. M. Drazen, and R. D. Kamm. On the mechanism of mucosal folding in normal and asthmatic airways. J. Appl. Physiol. 83(6):1814–1821, 1997.

    PubMed  CAS  Google Scholar 

  110. Wong, C. H., F. Cui, B. K. Tan, Z. Liu, H. P. Lee, C. Lu, C. L. Foo, and C. Song. Nonlinear finite element simulations to elucidate the determinants of perforator patency in propeller flaps. Ann. Plast. Surg. 59(6):672–678, 2007.

    Article  PubMed  CAS  Google Scholar 

  111. Wood, N. B., S. Z. Zhao, A. Zambanini, M. Jackson, W. Gedroyc, S. A. Thom, A. D. Hughes, and X. Y. Xu. Curvature and tortuosity of the superficial femoral artery: a possible risk factor for peripheral arterial disease. J. Appl. Physiol. 101(5):1412–1418, 2006.

    Article  PubMed  CAS  Google Scholar 

  112. Xiao, Y., Y. Zhao, D. Hayman, and H.C. Han. Arterial buckling promotes NF-κB activation associated with cell proliferation in porcine carotid arteries perfused ex vivo. In: Ann. Meeting Biomed. Eng. Soc. (BMES 2011). 2011. Hartford, CT.

  113. Yang, W., T. C. Fung, K. S. Chian, and C. K. Chong. Three-dimensional finite element model of the two-layered oesophagus, including the effects of residual strains and buckling of mucosa. Proc. Inst. Mech. Eng. [H] 221(4):417–426, 2007.

    CAS  Google Scholar 

  114. Zheng, T., Y. Fan, Y. Xiong, W. Jiang, and X. Deng. Hemodynamic performance study on small diameter helical grafts. ASAIO J. 55(3):192–199, 2009.

    Article  PubMed  Google Scholar 

  115. Zubov, L. M., and D. N. Sheidakov, Instability of a hollow elastic cylinder under tension, torsion, and inflation. J. Appl. Mech. 75(1), 2008.

Download references

Acknowledgments

This work was supported by the National Heart, Lung, and Blood Institute (R01 HL095852 to HCH, T32 HL04776 to JKWC), the MBRS-RISE program of the National Institutes of Health (Predoctoral fellowship to JG under grant GM60655), and the National Science Foundation (CAREER award 0644646 to HCH).

Conflict of interest

The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Chao Han.

Additional information

Associate Editor Elena S. Di Martino oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, HC., Chesnutt, J.K.W., Garcia, J.R. et al. Artery Buckling: New Phenotypes, Models, and Applications. Ann Biomed Eng 41, 1399–1410 (2013). https://doi.org/10.1007/s10439-012-0707-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0707-0

Keywords

Navigation