Skip to main content
Log in

On the Estimation of Total Arterial Compliance from Aortic Pulse Wave Velocity

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Total arterial compliance (C T) is a main determinant of cardiac afterload, left ventricular function and arterio-ventricular coupling. C T is physiologically more relevant than regional aortic stiffness. However, direct, in vivo, non-invasive, measurement of C T is not feasible. Several methods for indirect C T estimation require simultaneous recording of aortic flow and pressure waves, limiting C T assessment in clinical practice. In contrast, aortic pulse wave velocity (aPWV) measurement, which is considered as the “gold standard” method to assess arterial stiffness, is noninvasive and relatively easy. Our aim was to establish the relation between aPWV and C T. In total, 1000 different hemodynamic cases were simulated, by altering heart rate, compliance, resistance and geometry using an accurate, distributed, nonlinear, one-dimensional model of the arterial tree. Based on Bramwell–Hill theory, the formula \( C_{\text{T}} = k \cdot {\text{aPWV}}^{ - 2} \) was found to accurately estimate C T from aPWV. Coefficient k was determined both analytically and by fitting C T vs. aPWV data. C T estimation may provide an additional tool for cardiovascular risk (CV) assessment and better management of CV diseases. C T could have greater impact in assessing elderly population or subjects with elevated arterial stiffness, where aPWV seem to have limited prognostic value. Further clinical studies should be performed to validate the formula in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

C T :

Total arterial compliance

LV:

Left ventricle

PWV:

Pulse wave velocity

aPWV:

Aortic pulse wave velocity

CV:

Cardiovascular

RMSE:

Root mean square error

SSE:

Sum of square errors

SD:

Standard deviation

CI:

Confidence intervals

BP:

Blood pressure

References

  1. Bergel, D. H. The dynamic elastic properties of the arterial wall. J. Physiol. 156:458–469, 1961.

    PubMed  CAS  Google Scholar 

  2. Borlotti, A., S. Vermeersch, E. Rietzschel, P. Segers, and A. W. Khir. A comparison between local wave speed in the carotid and femoral arteries in healthy humans: application of a new method. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010:2857–2860, 2010.

    PubMed  Google Scholar 

  3. Bramwell, J. C., and A. V. Hill. The velocity of the pulse wave in man. Proc. R. Soc. Lond. B 93:298–306, 1922.

    Article  Google Scholar 

  4. Chemla, D., I. Antony, Y. Lecarpentier, and A. Nitenberg. Contribution of systemic vascular resistance and total arterial compliance to effective arterial elastance in humans. Am. J. Physiol. Heart Circ. Physiol. 285:H614–H620, 2003.

    PubMed  CAS  Google Scholar 

  5. Chiu, Y. C., P. W. Arand, S. G. Shroff, T. Feldman, and J. D. Carroll. Determination of pulse wave velocities with computerized algorithms. Am. Heart J. 121:1460–1470, 1991.

    Article  PubMed  CAS  Google Scholar 

  6. de Simone, G., M. J. Roman, S. R. Daniels, G. Mureddu, T. R. Kimball, R. Greco, and R. B. Devereux. Age-related changes in total arterial capacitance from birth to maturity in a normotensive population. Hypertension 29:1213–1217, 1997.

    Article  PubMed  Google Scholar 

  7. Haluska, B. A., L. Jeffriess, M. Downey, S. G. Carlier, and T. H. Marwick. Influence of cardiovascular risk factors on total arterial compliance. J. Am. Soc. Echocardiogr. 21:123–128, 2008.

    Article  PubMed  Google Scholar 

  8. Haluska, B. A., K. Matthys, R. Fathi, E. Rozis, S. G. Carlier, and T. H. Marwick. Influence of arterial compliance on presence and extent of ischaemia during stress echocardiography. Heart 92:40–43, 2006.

    Article  PubMed  CAS  Google Scholar 

  9. Holenstein, R., P. Niederer, and M. Anliker. A viscoelastic model for use in predicting arterial pulse waves. J. Biomech. Eng. 102:318–325, 1980.

    Article  PubMed  CAS  Google Scholar 

  10. Langerwouters, G. J. Visco-elasticity of the human aorta in vitro in relation to pressure and age. Ph.D. Dissertation, Vrije Universiteit, Amsterdam, p. 221, 1982.

  11. Laurent, S., P. Boutouyrie, R. Asmar, I. Gautier, B. Laloux, L. Guize, P. Ducimetiere, and A. Benetos. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 37:1236–1241, 2001.

    Article  PubMed  CAS  Google Scholar 

  12. Laurent, S., J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur. Heart J. 27:2588–2605, 2006.

    Article  PubMed  Google Scholar 

  13. Liu, Z., K. P. Brin, and F. C. Yin. Estimation of total arterial compliance: an improved method and evaluation of current methods. Am. J. Physiol. 251:H588–H600, 1986.

    PubMed  CAS  Google Scholar 

  14. Mackenzie, I. S., I. B. Wilkinson, and J. R. Cockcroft. Assessment of arterial stiffness in clinical practice. QJM 95:67–74, 2002.

    Article  PubMed  CAS  Google Scholar 

  15. Mancia, G., G. De Backer, A. Dominiczak, R. Cifkova, R. Fagard, G. Germano, G. Grassi, A. M. Heagerty, S. E. Kjeldsen, S. Laurent, et al. Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J. Hypertens. 25:1105–1187, 2007.

    Article  PubMed  CAS  Google Scholar 

  16. Matsushima, Y., H. Kawano, Y. Koide, T. Baba, G. Toda, S. Seto, and K. Yano. Relationship of carotid intima-media thickness, pulse wave velocity, and ankle brachial index to the severity of coronary artery atherosclerosis. Clin. Cardiol. 27:629–634, 2004.

    Article  PubMed  Google Scholar 

  17. Mattace-Raso, F. U., T. J. van der Cammen, A. Hofman, N. M. van Popele, M. L. Bos, M. A. Schalekamp, R. Asmar, R. S. Reneman, A. P. Hoeks, M. M. Breteler, et al. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation 113:657–663, 2006.

    Article  PubMed  Google Scholar 

  18. Megnien, J. L., A. Simon, N. Denarie, M. Del-Pino, J. Gariepy, P. Segond, and J. Levenson. Aortic stiffening does not predict coronary and extracoronary atherosclerosis in asymptomatic men at risk for cardiovascular disease. Am. J. Hypertens. 11:293–301, 1998.

    Article  PubMed  CAS  Google Scholar 

  19. Mitchell, G. F., S. J. Hwang, R. S. Vasan, M. G. Larson, M. J. Pencina, N. M. Hamburg, J. A. Vita, D. Levy, and E. J. Benjamin. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation 121:505–511, 2010.

    Article  PubMed  Google Scholar 

  20. Mottram, P. M., B. A. Haluska, R. Leano, S. Carlier, C. Case, and T. H. Marwick. Relation of arterial stiffness to diastolic dysfunction in hypertensive heart disease. Heart 91:1551–1556, 2005.

    Article  PubMed  CAS  Google Scholar 

  21. Pannier, B., A. P. Guerin, S. J. Marchais, M. E. Safar, and G. M. London. Stiffness of capacitive and conduit arteries: prognostic significance for end-stage renal disease patients. Hypertension 45:592–596, 2005.

    Article  PubMed  CAS  Google Scholar 

  22. Papaioannou, T. G., D. S. Mathioulakis, and S. G. Tsangaris. Simulation of systolic and diastolic left ventricular dysfunction in a mock circulation: the effect of arterial compliance. J. Med. Eng. Technol. 27:85–89, 2003.

    Article  PubMed  CAS  Google Scholar 

  23. Protogerou, A. D., M. E. Safar, P. Iaria, H. Safar, K. Le Dudal, J. Filipovsky, O. Henry, P. Ducimetiere, and J. Blacher. Diastolic blood pressure and mortality in the elderly with cardiovascular disease. Hypertension 50:172–180, 2007.

    Article  PubMed  CAS  Google Scholar 

  24. Rabben, S. I., N. Stergiopulos, L. R. Hellevik, O. A. Smiseth, S. Slordahl, S. Urheim, and B. Angelsen. An ultrasound-based method for determining pulse wave velocity in superficial arteries. J. Biomech. 37:1615–1622, 2004.

    Article  PubMed  Google Scholar 

  25. Reymond, P., Y. Bohraus, F. Perren, F. Lazeyras, and N. Stergiopulos. Validation of a patient-specific one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circ. Physiol. 301:H1173–H1182, 2011.

    Article  PubMed  CAS  Google Scholar 

  26. Reymond, P., F. Merenda, F. Perren, D. Rufenacht, and N. Stergiopulos. Validation of a one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circ. Physiol. 297:H208–H222, 2009.

    Article  PubMed  CAS  Google Scholar 

  27. Safar, M. E., and G. M. London. Arterial and venous compliance in sustained essential hypertension. Hypertension 10:133–139, 1987.

    Article  PubMed  CAS  Google Scholar 

  28. Sagawa, K. Cardiac Contraction and the Pressure–Volume Relationship. Oxford, UK: Oxford University Press, 1988.

    Google Scholar 

  29. Sakuragi, S., and W. P. Abhayaratna. Arterial stiffness: methods of measurement, physiologic determinants and prediction of cardiovascular outcomes. Int. J. Cardiol. 138:112–118, 2010.

    Article  PubMed  Google Scholar 

  30. Segers, P., P. Verdonck, Y. Deryck, S. Brimioulle, R. Naeije, S. Carlier, and N. Stergiopulos. Pulse pressure method and the area method for the estimation of total arterial compliance in dogs: sensitivity to wave reflection intensity. Ann. Biomed. Eng. 27:480–485, 1999.

    Article  PubMed  CAS  Google Scholar 

  31. Stergiopulos, N., J. J. Meister, and N. Westerhof. Simple and accurate way for estimating total and segmental arterial compliance: the pulse pressure method. Ann. Biomed. Eng. 22:392–397, 1994.

    Article  PubMed  CAS  Google Scholar 

  32. Stergiopulos, N., J. J. Meister, and N. Westerhof. Evaluation of methods for estimation of total arterial compliance. Am. J. Physiol. 268:H1540–H1548, 1995.

    PubMed  CAS  Google Scholar 

  33. Stergiopulos, N., P. Segers, and N. Westerhof. Use of pulse pressure method for estimating total arterial compliance in vivo. Am. J. Physiol. 276:H424–H428, 1999.

    PubMed  CAS  Google Scholar 

  34. Van Bortel, L. M., S. Laurent, P. Boutouyrie, P. Chowienczyk, J. K. Cruickshank, T. De Backer, J. Filipovsky, S. Huybrechts, F. U. Mattace-Raso, A. D. Protogerou, et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J. Hypertens. 30:445–448, 2012.

    Article  PubMed  Google Scholar 

  35. Verwoert, G. C., S. E. Elias-Smale, D. Rizopoulos, M. T. Koller, E. W. Steyerberg, A. Hofman, M. Kavousi, E. J. Sijbrands, A. P. Hoeks, R. S. Reneman, et al. Does aortic stiffness improve the prediction of coronary heart disease in elderly? The Rotterdam Study. J. Hum. Hypertens. 26:28–34, 2012.

    Article  PubMed  CAS  Google Scholar 

  36. Vlachopoulos, C., K. Aznaouridis, and C. Stefanadis. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J. Am. Coll. Cardiol. 55:1318–1327, 2010.

    Article  PubMed  Google Scholar 

  37. Zoungas, S., and R. P. Asmar. Arterial stiffness and cardiovascular outcome. Clin. Exp. Pharmacol. Physiol. 34:647–651, 2007.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors have no conflict of interest or financial support to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore G. Papaioannou.

Additional information

Associate Editor Joan Greve oversaw the review of this article.

O. Vardoulis and T. G. Papaioannou contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vardoulis, O., Papaioannou, T.G. & Stergiopulos, N. On the Estimation of Total Arterial Compliance from Aortic Pulse Wave Velocity. Ann Biomed Eng 40, 2619–2626 (2012). https://doi.org/10.1007/s10439-012-0600-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0600-x

Keywords

Navigation