Skip to main content
Log in

The Current Status of Alternatives to Animal Testing and Predictive Toxicology Methods Using Liver Microfluidic Biochips

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this paper, we will consider new in vitro cell culture platforms and the progress made, based on the microfluidic liver biochips dedicated to pharmacological and toxicological studies. Particular emphasis will be given to recent developments in the microfluidic tools dedicated to cell culture (more particularly liver cell culture), in silico opportunities for Physiologically Based PharmacoKinetic (PBPK) modelling, the challenge of the mechanistic interpretations offered by the approaches resulting from “multi-omics” data (transcriptomics, proteomics, metabolomics, cytomics) and imaging microfluidic platforms. Finally, we will discuss the critical features regarding microfabrication, design and materials, and cell functionality as the key points for the future development of new microfluidic liver biochips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

3T3:

Mouse fibroblast cell line

A549:

Human lung alveolar carcinoma cell line

ADME:

Absorption, Distribution, Metabolism and Excretion

APAP:

Acetyl-P-AminoPhenol (acetaminophen)

CEFIC:

Conseil Européen des Industries Chimiques

CYP:

Cytochromes P450

EROD:

Ethoxy Resorufin O Deethylase

GSEA:

Gene Set Enrichment Analysis

GSH:

Glutathione

HCS:

High Content Screening

HCT-116:

Human colon carcinoma cell line

Hep3B:

Human hepatoma cell line

HepaRG:

Hepatoma-derived cell line

HepG2/C3a:

Human liver hepatocarcinoma cell line/subclone C3a

HK-2:

Renal tubular proximal cell line

HPA:

Primary human preadipocyte

IC50:

Inhibition Concentration of 50% of the analysed endpoints

KEGG:

Kyoto Encyclopedia of Genes and Genomes

LD50:

Lethal dose leading to the death of 50% of population

MCF7:

Human breast adenocarcinoma cell line

MDCK:

Madin Darby Canine Kidney cell line

MDR1:

Multi Drug Resistance 1 (P-glycoprotein 1)

MRP2:

Multi drug resistant associated protein number 2 gene

MS:

Mass spectrometry

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NAPQI:

N-Acetyl-P-Benzoquinone Imine

NMR:

Nuclear Magnetic Resonance spectrometry

PBPK:

Physiologically Based PharmacoKinetic

PDMS:

Polydimethylsiloxane

PK-PD:

PharmacoKinetic-PharmacoDynamic

REACH:

Registration, Evaluation and Authorization of Chemicals

SULT:

Sulfo-transferase

UGT:

UDP-glucuronyltransferase

References

  1. Abraham, V. C., D. L. Taylor, and J. R. Haskins. High content screening applied to large-scale cell biology. Trends Biotechnol. 22:15–22, 2004.

    Article  PubMed  CAS  Google Scholar 

  2. Albrecht, D. R., G. H. Underhill, J. Resnikoff, A. Mendelson, S. N. Bhatia, and J. V. Shah. Microfluidics-integrated time-lapse imaging for analysis of cellular dynamics. Integr. Biol. 2:278–287, 2010.

    Article  CAS  Google Scholar 

  3. Anderson, J., D. Chiu, J. McDonald, R. Jackman, O. Cherniavskaya, H. Wu, S. Whitesides, and G. Whitesides. Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. Anal. Chem. 72:3158–3164, 2000.

    Article  PubMed  CAS  Google Scholar 

  4. Aninat, C., A. Piton, D. Glaise, T. Le Charpentier, S. Langouet, F. Morel, et al. Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells. Drug Metab. Dispos. 34:75–83, 2006.

    Article  PubMed  CAS  Google Scholar 

  5. Baudoin, R., A. Corlu, L. Griscom, C. Legallais, and E. Leclerc. Trends in the development of microfluidic cell biochips for in vitro hepatotoxicity. Toxicol. In Vitro 21:535–544, 2007.

    Article  PubMed  CAS  Google Scholar 

  6. Baudoin, R., L. Griscom, J. M. Prot, C. Legallais, and E. Leclerc. Behavior of HepG2/C3A cell cultures in a microfluidic bioreactor. Biochem. Eng. J. 53:172–181, 2011.

    Article  CAS  Google Scholar 

  7. Becker, H., and C. Gärtner. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21:12–26, 2000.

    Article  PubMed  CAS  Google Scholar 

  8. Beger, R., J. Sun, and L. Schnackenberg. Metabolomics approaches for discovering biomarkers of drug-induced hepatotoxicity and nephrotoxicity. Toxicol. Appl. Pharmacol. 243:154–166, 2010.

    Article  PubMed  CAS  Google Scholar 

  9. Bhatia, S. N., M. L. Yarmush, and M. Toner. Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts. J. Biomed. Mater. Res. 34:189–199, 1997.

    Article  PubMed  CAS  Google Scholar 

  10. Bhogal, N., C. Grindon, R. Combes, and M. Balls. Toxicity testing: creating a revolution based on new technologies. Trends Biotechnol. 23:299–307, 2005.

    Article  PubMed  CAS  Google Scholar 

  11. Blaauboer, B. J., and M. E. Andersen. The need for a new toxicity testing and risk analysis paradigm to implement REACH or any other large scale testing initiative. Arch. Toxicol. 81:385–387, 2007.

    Article  PubMed  CAS  Google Scholar 

  12. Blanchard, N., E. Alexandre, C. Abadie, T. Lavé, B. Heyd, G. Mantion, D. Jaeck, L. Richert, and P. Coassolo. Comparison of clearance predictions using primary cultures and suspensions of human hepatocytes. Xenobiotica 35:1–15, 2005.

    Article  PubMed  CAS  Google Scholar 

  13. Blanchard, N., L. Richert, B. Notter, F. Delobel, P. David, P. Coassolo, and T. Lavé. Impact of serum on clearance predictions obtained from suspensions and primary cultures of rat hepatocytes. Eur. J. Pharm. Sci. 23:189–199, 2004.

    Article  PubMed  CAS  Google Scholar 

  14. Boverhof, D. R., L. D. Burgoon, C. Tashiro, B. Sharratt, B. Chittim, J. R. Harkema, et al. Comparative toxicogenomic analysis of the hepatotoxic effects of TCDD in Sprague Dawley rats and C57BL/6 mice. Toxicol. Sci. 94:398–416, 2006.

    Article  PubMed  CAS  Google Scholar 

  15. Chao, P., T. Maguire, E. Novik, K. C. Cheng, and M. L. Yarmush. Evaluation of a microfluidic based cell culture platform with primary human hepatocytes for the prediction of hepatic clearance in human. Biochem. Pharmacol. 78:625–632, 2009.

    Article  PubMed  CAS  Google Scholar 

  16. Charati, S., and S. Stern. Diffusion of gases in silicone polymer: molecular dynamics simulations. Macromolecules 31:5529–5535, 1998.

    Article  CAS  Google Scholar 

  17. Cheng, S., J. M. Prot, E. Leclerc, and F. Y. Bois. Zonation-related pathways in human hepatocellular carcinoma cells in dynamic vs. static culture microenvironments. BMC Genomics, 2011 (to appear).

  18. Choucha-Snouber, L., L. Griscom, P. E. Poleni, F. Razan, C. Brochot, C. Aninat, A. Corlu, C. Legallais, and E. Leclerc. Liver kidney microfluidic bioreactor for cell coculture in drug studies. In: Proceedings of the Miniaturized Total Analysis System, μTAS, Conference 2010, Groningen, The Netherlands.

  19. Claude, N., F. Goldfain-Blanc, and A. Guillouzo. La place des methods in silico, in vitro, in omic dans l’évaluation de la sécurité des medicaments. Med. Sci. 25:105–110, 2009.

    Google Scholar 

  20. Domansky, K., W. Inman, J. Serdy, A. Dash, M. H. Lim, and L. G. Griffith. Perfused multiwell plate for 3D liver tissue engineering. Lab Chip 10:51–58, 2010.

    Article  PubMed  CAS  Google Scholar 

  21. Dorn, J. F., G. Danuser, and G. Yang. Computational processing and analysis of dynamic fluorescence image data. Methods Cell Biol. 85:497–538, 2008.

    Article  PubMed  CAS  Google Scholar 

  22. Dumas, M. E., R. Barton, A. Toye, O. Cloarec, C. Blancher, A. Rothwell, J. Fearnside, R. Tatoud, V. Blanc, J. Lindon, S. V. Mitchell, E. Holmes, M. I. McCarthy, J. Scott, D. Gauguier, and J. Nicholson. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc. Natl. Acad. Sci. USA 103:12511–12516, 2006.

    Article  PubMed  CAS  Google Scholar 

  23. Eisenbrand, G., B. Pool-Zobel, V. Baker, M. Balls, B. J. Blaauboer, A. Boobis, et al. Methods of in vitro toxicology. Food Chem. Toxicol. 40:193–236, 2002.

    Article  PubMed  CAS  Google Scholar 

  24. Eschbach, E., S. S. Chatterjee, M. Noldner, E. Gottwald, H. Dertinger, K. F. Weibezahn, and G. Knedlitschek. Microstructured scaffolds for liver tissue cultures of high cell density: morphological and biochemical characterization of tissue aggregates. J. Cell. Biochem. 95:243–255, 2005.

    Article  PubMed  CAS  Google Scholar 

  25. Fiehn, O., J. Kopka, P. Dörmann, T. Altmann, R. N. Trethewey, and L. Willmitzer. Metabolite profiling for plant functional genomics. Nat. Biotechnol. 18:1157–1161, 2000.

    Article  PubMed  CAS  Google Scholar 

  26. Figeys, D. Combining different ‘omics’ technologies to map and validate protein–protein interactions in humans. Brief Funct Genomic Proteomics 2:357–365, 2004.

    Article  CAS  Google Scholar 

  27. Gibney, M., M. Walsh, L. Brennan, H. Roche, B. German, and B. van Ommen. Metabolomics in human nutrition: opportunities and challenges. Am. J. Clin. Nutr. 82:497–503, 2005.

    PubMed  CAS  Google Scholar 

  28. Greim, H. Toxicological comments to the discussion about REACH (H. Greim, M. Arand, H. Autrup, H.M. Bolt, J. Bridges, E. Dybing, R. Glomot, V. Foa, R. Schulte-Hermann, Arch Toxicol 2006, 80: 121–124). Reply to the letter to the editor: the need for a new toxicity testing and risk analysis paradigm to implement REACH or any other large scale testing initiative, by B.J. Blaauboer and M.E. Andersen (Arch Toxicol 2007, 81: 385–387). Arch. Toxicol. 80:121–124, 2007.

    Article  Google Scholar 

  29. Griffin, S. J., and J. B. Houston. Prediction of in vitro intrinsic clearance from hepatocytes: comparison of suspensions and monolayer cultures. Drug Metab. Dispos. 33:115–120, 2005.

    PubMed  CAS  Google Scholar 

  30. Griffith, L., and G. Naughton. Tissue engineering—current challenges and expanding opportunities. Science 295:1009–1014, 2002.

    Article  PubMed  CAS  Google Scholar 

  31. Gripon, P., S. Rumin, S. Urban, J. Le Seyec, D. Glaise, I. Cannie, et al. Infection of a human hepatoma cell line by hepatitis B virus. Proc. Natl. Acad. Sci. USA 99:15655–15660, 2002.

    Article  PubMed  CAS  Google Scholar 

  32. Haenen, B., C. Rompelberg, K. Van Twillert, M. Hamzink, J. Dormans, and J. Van Eljkeren. Utility of rat liver slices to estimate hepatic clearance for application in physiologically based pharmacokinetic modeling: a study with tolbutamide, a compound with low extraction efficiency. Drug Metab. Dispos. 30:307–313, 2001.

    Article  Google Scholar 

  33. Haney, S. A., P. LaPan, J. Pan, and J. Zhang. High-content screening moves to the front of the line. Drug Discov. Today 11:889–894, 2006.

    Article  PubMed  CAS  Google Scholar 

  34. Hartung, T., and C. Rovida. Chemical regulators have overreached. Nature 460:1080–1081, 2009.

    Article  PubMed  CAS  Google Scholar 

  35. Herrera, G., L. Diaz, A. Martinez-Romero, A. Gomes, E. Villamon, R. C. Callaghan, et al. Cytomics: a multiparametric, dynamic approach to cell research. Toxicol. In Vitro 21:176–182, 2007.

    Article  PubMed  CAS  Google Scholar 

  36. Hewitt, N. J., K. U. Bühring, J. Dasenbrock, J. Haunschild, B. Ladstetter, and D. Utesch. Studies comparing in vivo:in vitro metabolism of three pharmaceutical compounds in rat, dog, monkey, and human using cryopreserved hepatocytes, microsomes, and collagen gel immobilized hepatocyte cultures. Drug Metab. Dispos. 29:1042–1050, 2001.

    PubMed  CAS  Google Scholar 

  37. Houston, J. B. Relevance of in vitro kinetic parameters to in vivo metabolism of xenobiotics. Toxicol. In Vitro 8:507–512, 1994.

    Article  PubMed  CAS  Google Scholar 

  38. Houston, J. B., and D. J. Carlile. Prediction of hepatic clearance from microsomes, hepatocytes and liver slices. Drug Metab. Rev. 29:891–922, 1997.

    Article  PubMed  CAS  Google Scholar 

  39. Ito, K., and J. B. Houston. Comparison of the use of liver models for predicting drug clearance using in vitro kinetic data from hepatic microsomes and isolated hepatocytes. Pharm. Res. (NY) 21:785–792, 2004.

    Article  CAS  Google Scholar 

  40. Iwatsubo, T., N. Hirota, T. Ooie, H. Suzuki, N. Shimada, K. Chiba, T. Ishizaki, C. E. Green, C. A. Tyson, and Y. Sugiyama. Prediction of in vivo drug metabolism in the human liver from in vitro metabolism data. Pharmacol. Ther. 73:147–171, 1997.

    Article  PubMed  CAS  Google Scholar 

  41. Kane, B. J., M. J. Zinner, M. L. Yarmush, and M. Toner. Liver-specific functional studies in a microfluidic array of primary mammalian hepatocytes. Anal. Chem. 78:4291–4298, 2006.

    Article  PubMed  CAS  Google Scholar 

  42. Kanehisa, M., S. Goto, M. Furumichi, M. Tanabe, and M. Hirakawa. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 38:355–360, 2010.

    Article  Google Scholar 

  43. Khetani, S. R., and S. N. Bhatia. Microscale human liver tissue for drug development. Nat. Biotechnol. 26:120–126, 2008.

    Article  PubMed  CAS  Google Scholar 

  44. Kidambi, S., R. Yarmush, E. Novik, P. B. Chao, M. L. Yarmush, and Y. Nahmias. Oxygen-mediated enhancement of metabolism, functional polarization, gene expression, and drug clearance in co-cultures of primary hepatocytes. PNAS 106:15714–15719, 2009.

    Article  PubMed  CAS  Google Scholar 

  45. Kimura, H., H. Nakayama, T. Yamamoto, Y. Sakai, and T. Fujii. Development of on chip co culture system for cytotoxicity test using Caco-2 and HepG2. IEEJ 129:252–258, 2009.

    Google Scholar 

  46. Kimura, H., T. Yamamoto, H. Sakai, Y. Sakai, and T. Fujii. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models”. Lab Chip 8:741–746, 2008.

    Article  PubMed  CAS  Google Scholar 

  47. Korn, K., and E. Krausz. Cell-based high-content screening of small-molecule libraries. Curr. Opin. Chem. Biol. 11:503–510, 2007.

    Article  PubMed  CAS  Google Scholar 

  48. Leclerc, E., Y. Sakai, and T. Fujii. Cell culture in 3-dimensional microfluidic structure of PDMS (polydimethylsiloxane). Biomed. Microdev. 5(2):109–114, 2003.

    Article  CAS  Google Scholar 

  49. Leclerc, E., Y. Sakai, and T. Fujii. Perfusion culture of fetal human hepatocytes in microfluidic-environments. Biochem. Eng. J. 20:143–148, 2004.

    Article  CAS  Google Scholar 

  50. Leclerc, E., Y. Sakai, and T. Fujii. Microfluidic PDMS (polydimethylsiloxane) bioreactors for large scale culture of hepatocytes. Biotech. Prog. 20:750–755, 2004.

    Article  CAS  Google Scholar 

  51. Lee, P., T. Gaige, and P. Hung. Microfluidic systems for live cell imaging. Methods Cell Biol. 102:77–103, 2011.

    Article  PubMed  Google Scholar 

  52. Lee, P., N. Ghorashian, T. Gaige, and P. Hung. Microfluidic system for automated cell based assays. J. Assoc. Lab. Autom. 12:363–367, 2007.

    Article  Google Scholar 

  53. Lee, S., and B. J. Howell. High-content screening: emerging hardware and software technologies. Methods Enzymol. 414:468–483, 2006.

    Article  PubMed  CAS  Google Scholar 

  54. Lee, M. Y., R. A. Kumar, S. M. Sukumaran, M. G. Hogg, D. S. Clark, and J. S. Dordick. Three-dimensional cellular microarray for high-throughput toxicology assays. Proc. Natl Acad. Sci. USA 105:59–63, 2008.

    Article  PubMed  CAS  Google Scholar 

  55. Ma, B., G. Zhang, J. Qin, and B. Lin. Characterization of drug metabolites and cytotoxicity assay simultaneously using an integrated microfluidic device. Lab Chip 9:232–238, 2009.

    Article  PubMed  CAS  Google Scholar 

  56. Madalinski, G., E. Godat, S. Alves, D. Lesage, E. Genin, P. Levi, J. Labarre, J. C. Tabet, E. Ezan, and C. Junot. Direct introduction of biological samples into a LTQ-Orbitrap hybrid mass spectrometer as a tool for fast metabolome analysis. Anal. Chem. 80:3291–3303, 2009.

    Article  Google Scholar 

  57. Mahler, G. J., M. B. Esch, R. P. Glahn, and M. L. Shuler. Characterization of a gastrointestinal tract microscale cell culture analog used to predict drug toxicity. Biotechnol. Bioeng. 104:193–205, 2009.

    Article  PubMed  CAS  Google Scholar 

  58. Midwoud, P. M., G. M. M. van Groothuis Merema, M. T. Merema, and E. Verpoorte. Microfluidic biochip for the perifusion of precision-cut rat liver slices for metabolism and toxicology studies. Biotech. Bioeng. 105:184–194, 2010.

    Article  Google Scholar 

  59. Midwoud, P. M., M. T. van Merema, E. Verpoorte, and G. M. M. Groothuis. A microfluidic approach for in vitro assessment of interorgan interactions in drug metabolism using intestinal and liver slices. Lab Chip 10:2778–2786, 2010.

    Article  PubMed  Google Scholar 

  60. Nicholson, J. K., J. Connelly, J. C. Lindon, and E. Holmes. Metabonomics: a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov. 1:153–161, 2002.

    Article  PubMed  CAS  Google Scholar 

  61. Nicholson, J. K., J. C. Lindon, and E. Holmes. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189, 1999.

    Article  PubMed  CAS  Google Scholar 

  62. Novik, E., T. J. Maguire, P. Chao, K. C. Cheng, and M. L. Yarmush. A microfluidic hepatic coculture platform for cell-based drug metabolism studies. Biochem. Pharmacol. 79:1036–1044, 2010.

    Article  PubMed  CAS  Google Scholar 

  63. Paine, S., A. Parker, P. Gardiner, P. Webborn, and R. Riley. Prediction of the pharmacokinetics of atorvastatin, cerivastatin, and indomethacin using kinetic models applied to isolated rat hepatocytes. Drug Metab. Dispos. 36:1365–1374, 2008.

    Article  PubMed  CAS  Google Scholar 

  64. Pang, K. S., and M. Rowland. Hepatic clearance of drugs. II. Experimental evidence for acceptance of the “well-stirred” model over the “parallel tube” model using lidocaine in the perfused rat liver in situ preparation. J. Pharmacokinet. Biopharm. 5:655–680, 1977.

    Article  PubMed  CAS  Google Scholar 

  65. Pang, K. S., and M. Rowland. Hepatic clearance of drugs. I. Theoretical considerations of a “well-stirred” model and a “parallel tube” model. Influence of hepatic blood flow, plasma and blood cell binding, and the hepatocellular enzymatic activity on hepatic drug clearance. J. Pharmacokinet. Biopharm. 5:625–653, 1977.

    Article  PubMed  CAS  Google Scholar 

  66. Paran, Y., M. Ilan, Y. Kashman, S. Goldstein, Y. Liron, B. Geiger, et al. High-throughput screening of cellular features using high-resolution light-microscopy; application for profiling drug effects on cell adhesion. J. Struct. Biol. 158:233–243, 2007.

    Article  PubMed  CAS  Google Scholar 

  67. Pelkonen, O., and M. Turpeinen. In vitro-in vivo extrapolation of hepatic clearance: biological tools, scaling factors, model assumptions and correct concentrations. Xenobiotica. 37:1066–1089, 2007.

    Article  PubMed  CAS  Google Scholar 

  68. Powers, M. J., D. Janigan, K. E. Wack, C. S. Baker, D. B. Stolz, and L. Griffith. Functional behavior of primary rat liver cells in a three-dimensional perfused microarray bioreactor. Tissue Eng. 8:499–508, 2002.

    Article  PubMed  Google Scholar 

  69. Prot, J. M., C. Aninat, L. Griscom, F. Razan, C. Brochot, C. Guguen Guillouzo, C. Legallais, A. Corlu, and E. Leclerc. Improvement of HepG2/C3a cell functions in a microfluidic biochip. Biotechnol. Bioeng. 108:1704–1715, 2011.

    Article  PubMed  CAS  Google Scholar 

  70. Prot, J. M., A. S. Briffaut, F. Letourneur, P. Chafey, F. Merlier, Y. Grandvalet, C. Legallais, and E. Leclerc. Integrated proteomic and transcriptomic investigation highlights original insight into paracetamol toxicity in liver biochip. PLoS One 6:e21268, 2011.

    Article  PubMed  CAS  Google Scholar 

  71. Prot, J. M., A. Bunescu, B. Elena-Hermann, C. Aninat, L. Choucha-Snouber, L. Griscom, F. Bois, C. Cécile Legallais, C. Céline Brochot, A. Anne Corlu, M. D. Dumas, and E. Leclerc. Alternative method in predictive toxicology using systemic biology on chip: application to acetaminophen injury. Toxicol. Appl. Pharmacol., 2011 (to appear).

  72. Prot, J. M., O. Videau, C. Brochot, C. Legallais, H. Benech, and E. Leclerc. A cocktail of metabolic probes demonstrates the relevance of primary human hepatocyte cultures in a microfluidic biochip for pharmaceutical drug screening. Int. J. Pharm. 408:67–75, 2011.

    Article  PubMed  CAS  Google Scholar 

  73. Riley, R., D. F. McGinnity, and R. P. Austn. A unified model for predicting human hepatic, metabolic clearance from in vitro intrinsic clearance data in hepatocyte and microsomes. Drug Metab. Dispos. 33:1304–1311, 2005.

    Article  PubMed  CAS  Google Scholar 

  74. Sheikh-Bahaei, S., S. H. J. Kim, S. Sheikh-Bahaei, and C. A. Hunt. Understanding the role of liver zonation in toxin elimination. Int. J. Intell. Control Syst. 14:33–40, 2009.

    Google Scholar 

  75. Shibata, Y., H. Takahashi, M. Chiba, and Y. Ishii. Prediction of hepatic clearance and availability by cryopreserved human hepatocytes: an application of serum incubation method. Drug Metab. Dispos. 30:892–896, 2002.

    Article  PubMed  CAS  Google Scholar 

  76. Shibata, Y., H. Takahashi, and Y. Ishii. A convenient in vitro screening method for predicting in vivo drug metabolic clearance using isolated hepatocytes suspended in serum. Drug Metab. Dispos. 28:1518–1523, 2000.

    PubMed  CAS  Google Scholar 

  77. Shintu, L., R. Baudoin, V. Navratil, J. M. Prot, C. Pontoizeau, M. Defernez, B. Blaise, C. Domange, A. Péry, P. Toulhoat, C. Legallais, C. Brochot, E. Leclerc, and M. E. Dumas. Metabolomics-on-a-chip and predictive systems toxicology in microfluidic. Bioartificial organs. Anal. Chem., 2011 (to appear).

  78. Sivaraman, A., J. K. Leach, S. Townsend, T. Iida, B. J. Hogan, D. B. Stolz, R. Fry, L. D. Samson, S. R. Tannenbaum, and L. G. Griffith. A microscale in vitro physiological model of the liver: predictive screens for drug metabolism and enzyme induction. Curr. Drug Metab. 6:569–592, 2005.

    Article  PubMed  CAS  Google Scholar 

  79. Sung, J. H., C. Kam, and M. J. Shuler. A microfluidic device for a pharmacokinetic–pharmacodynamic (PK-PD) model on a chip. Lab Chip 10:446–455, 2010.

    Article  PubMed  CAS  Google Scholar 

  80. Tilles, A., H. Baskaran, P. Roy, M. Yarmush, and M. Toner. Effects of oxygenation and flow on the viability and function of rat hepatocytes cocultured in a microchannel flat-plate bioreactor. Biotech. Bioeng. 73:379–389, 2001.

    Article  CAS  Google Scholar 

  81. Toh, Y. C., T. C. Lim, D. Tai, G. Xiao, D. van Noort, and H. Yu. A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab Chip 9:2026–2031, 2009.

    Article  PubMed  CAS  Google Scholar 

  82. Viravaidya, K., and M. L. Shuler. Incorporation of 3T3-L1 cells to mimic bioaccumulation in a microscale cell culture analog device for toxicity studies. Biotechnol. Prog. 20:590–597, 2004.

    Article  PubMed  CAS  Google Scholar 

  83. Walker, G. M., H. C. Zeringue, and D. J. Beebe. Microenvironment design considerations for cellular scale studies. Lab Chip 4:91–97, 2004.

    Article  PubMed  CAS  Google Scholar 

  84. Wood, D. K., D. M. Weingeist, S. N. Bhatia, and B. P. Engelward. Single cell trapping and DNA damage analysis using microwell arrays. PNAS 107:10008–10013, 2010.

    Article  PubMed  CAS  Google Scholar 

  85. Yu, H., I. Meyvantsson, I. A. Shkel, and D. J. Beebe. Diffusion dependent cell behavior in microenvironments. Lab Chip 5:1089–1095, 2005.

    Article  PubMed  CAS  Google Scholar 

  86. Zhang, S., W. Tong, B. Zheng, T. Susanto, L. Xia, C. Zhang, A. Ananthanarayanan, X. Tuo, R. Sakban, R. Jia, C. Iliescu, K. H. Chai, M. McMillian, S. Shen, H. Leo, and H. Yu. Robust high-throughput sandwich cell-based drug screening platform. Biomaterials 32:1229–1241, 2011.

    Article  PubMed  CAS  Google Scholar 

  87. Zhang, C., Z. Zhao, N. Abdul Rahim, D. van Noort, and H. Yu. Towards a human-on-chip: culturing multiple cell types on a chip with compartmentalized microenvironments. Lab Chip 9:3165–3312, 2009.

    Article  Google Scholar 

  88. Zuegge, J., G. Schneider, P. Coassolo, and T. Lave. Prediction of hepatic metabolic clearance: comparison and assessment of prediction models. Clin. Pharmacokinet. 40:553–563, 2001.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Jean Matthieu Prot received a grant from the post grenelle 189 project “Activism”. The UTC liver microfluidic biochips project is supported by the foundation of the University of Technology of Compiègne “La Fondation UTC pour l’innovation” via the “puce à cellule” project. The project was also supported by the ANR PCV 2007 program via the “μHepaReTox” project and by the ANR CP2D 2007 program via the SysBioX project. Finally, we thank Frederic Bois and Céline Brochot for their help in the discussion-redaction of the review.

Conflict of interest

We declare to have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Leclerc.

Additional information

Associate Editor Michael Shuler oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prot, J.M., Leclerc, E. The Current Status of Alternatives to Animal Testing and Predictive Toxicology Methods Using Liver Microfluidic Biochips. Ann Biomed Eng 40, 1228–1243 (2012). https://doi.org/10.1007/s10439-011-0480-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0480-5

Keywords

Navigation