Skip to main content
Log in

Opacification of Shape Memory Polymer Foam Designed for Treatment of Intracranial Aneurysms

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Shape memory polymer (SMP) foam possesses structural and mechanical characteristics that make them very promising as an alternative treatment for intracranial aneurysms. Our SMP foams have low densities, with porosities as high as 98.8%; favorable for catheter delivery and aneurysm filling, but unfavorable for attenuating X-rays. This lack of contrast impedes the progression of this material becoming a viable medical device. This paper reports on increasing radio-opacity by incorporating a high-Z element, tungsten particulate filler to attenuate X-rays, while conserving similar physical properties of the original non-opacified SMP foams. The minimal amount of tungsten for visibility was determined and subsequently incorporated into SMP foams, which were then fabricated into samples of increasing thicknesses. These samples were imaged through a pig’s skull to demonstrate radio-opacity in situ. Quantification of the increase in image contrast was performed via image processing methods and standard curves were made for varying concentrations of tungsten doped solid and foam SMP. 4% by volume loading of tungsten incorporated into our SMP foams has proven to be an effective method for improving radio-opacity of this material while maintaining the mechanical, physical and chemical properties of the original formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Arthur, A. S., S. A. Wilson, S. Dixit, and J. D. Barr. Hydrogel-coated coils for the treatment of cerebral aneurysms: preliminary results. Neurosurg. Focus 18:1–9, 2005.

    Article  Google Scholar 

  2. ASTM International. West Conshohocken, PA. ASTM D638. Standard test method for tensile properties of plastics. 2010.

  3. Baer, G., T. S. Wilson, D. L. Matthews, and D. J. Maitland. Shape-memory behavior of thermally stimulated polyurethane for medical applications. J. Appl. Polym. Sci. 103:3882–3892, 2007.

    Article  CAS  Google Scholar 

  4. Behl, M., M. Y. Razzaq, and A. Lendlein. Shape-memory polymers: multifunctional shape-memory polymers. Adv. Mater. 22:3388–3410, 2010.

    Article  PubMed  CAS  Google Scholar 

  5. Britz, G. W., L. Salem, D. W. Newell, J. Eskridge, and D. R. Flum. Impact of surgical clipping on survival in unruptured and ruptured cerebral aneurysms: a population-based study. Stroke 35:1399–1403, 2004.

    Article  PubMed  Google Scholar 

  6. Cabanlit, M., D. Maitland, T. Wilson, S. Simon, T. Wun, M. E. Gershwin, and J. Van de Water. Polyurethane shape-memory polymers demonstrate functional biocompatibility. Macromol. Biosci. 7:48–55, 2007.

    Article  PubMed  CAS  Google Scholar 

  7. Cao, X., L. J. Lee, T. Widya, and C. Macosko. Polyurethane/clay nanocomposites foams: processing, structure and properties. Polymer 46:775–783, 2005.

    Article  CAS  Google Scholar 

  8. Cui, J., K. Kratz, M. Heuchel, B. Hiebl, and A. Lendlein. Mechanically active scaffolds from radio-opaque shape-memory polymer-based composites. Polym. Adv. Technol. 22:180–189, 2010.

    Google Scholar 

  9. Currie, S., K. Mankad, and A. Goddard. Endovascular treatment of intracranial aneurysms: review of current practice. Postgrad. Med. J. 87:41–50, 2011.

    Article  PubMed  Google Scholar 

  10. De Nardo, L., R. Alberti, A. Cigada, L. Yahia, M. C. Tanzi, and S. Farè. Shape memory polymer foams for cerebral aneurysm reparation: effects of plasma sterilization on physical properties and cytocompatibility. Acta Biomater. 5:1508–1518, 2009.

    Article  PubMed  Google Scholar 

  11. Doerfler, A., I. Wanke, T. Egelhof, U. Dietrich, S. Asgari, D. Stolke, and M. Forsting. Aneurysmal rupture during embolization with Guglielmi detachable coils: causes, management, and outcome. Am. J. Neuroradiol. 22:1825–1832, 2001.

    PubMed  CAS  Google Scholar 

  12. Findlay, J. M., T. E. Tim, and E. Darsaut. Endovascular management of cerebral aneurysms: work in progress. Can. J. Neurol. Sci. 34:1–2, 2007.

    PubMed  Google Scholar 

  13. Gall, K., M. L. Dunn, Y. Liu, D. Finch, M. Lake, and N. A. Munshi. Shape memory polymer nanocomposites. Acta Mater. 50:5115, 2002.

    Article  CAS  Google Scholar 

  14. Gall, K., M. L. Dunn, Y. Liu, G. Stefanic, and D. Balzar. Internal stress storage in shape memory polymer nanocomposites. Appl. Phys. Lett. 85:290–292, 2004.

    Article  CAS  Google Scholar 

  15. Gibson, L. J., and M. F. Ashby. Cellular Solids Structure and Properties. London: Cambridge University Press, 1997.

    Google Scholar 

  16. Goods, S. H., C. L. Neuschwanger, L. L. Whinnery, and W. D. Nix. Mechanical properties of a particle-strengthened polyurethane foam. J. Appl. Polym. Sci. 74:2724–2736, 1999.

    Article  CAS  Google Scholar 

  17. Guglielmi, G., C. Ji, T. F. Massoud, A. Kurata, S. P. Lownie, F. F. Viñuela, and J. Robert. Experimental saccular aneurysms. Neuroradiology 36:547–550, 1994.

    Article  PubMed  CAS  Google Scholar 

  18. Gunnarsson, T., P. Klurfan, K. G. terBrugge, and R. A. Willinsky. Treatment of intracranial aneurysms with hydrogel coated expandable coils. Can. J. Neurol. Sci. 34:38–46, 2007.

    PubMed  Google Scholar 

  19. Hampikian, J. M., B. C. Heaton, F. C. Tong, Z. Zhang, and C. P. Wong. Mechanical and radiographic properties of a shape memory polymer composite for intracranial aneurysm coils. Mater. Sci. Eng. C 26:1373–1379, 2006.

    Article  CAS  Google Scholar 

  20. Hayakawa, M., Y. Murayama, G. R. Duckwiler, Y. P. Gobin, G. Guglielmi, and F. Viñuela. Natural history of the neck remnant of a cerebral aneurysm treated with the Guglielmi detachable coil system. J. Neurosurg. 93:561–568, 2000.

    Article  PubMed  CAS  Google Scholar 

  21. Higashida, R. T., B. J. Lahue, M. T. Torbey, L. N. Hopkins, E. Leip, and D. F. Hanley. Treatment of unruptured intracranial aneurysms: a nationwide assessment of effectiveness. Am. J. Neuroradiol. 28:146–151, 2007.

    PubMed  CAS  Google Scholar 

  22. Hong, B., N. V. Patel, M. J. Gounis, M. J. DeLeo, I. Linfante, J. C. Wojak, and A. K. Wakhloo. Semi-jailing technique for coil embolization of complex, wide-necked intracranial aneurysms. Neurosurgery 65:1131, 2009.

    Article  PubMed  Google Scholar 

  23. Horowitz, M., D. Samson, and P. Purdy. Does electrothrombosis occur immediately after embolization of an aneurysm with Guglielmi detachable coils? Am. J. Neuroradiol. 18:510–513, 1997.

    PubMed  CAS  Google Scholar 

  24. Johnston, S. C., S. Zhao, R. A. Dudley, M. F. Berman, and D. R. Gress. Treatment of unruptured cerebral aneurysms in California. Stroke 32(3):597–605, 2001.

    Google Scholar 

  25. Kallmes, D. F., A. D. Williams, H. J. Cloft, M. B. Lopes, G. R. Hankins, and G. A. Helm. Platinum coil-mediated implantation of growth factor-secreting endovascular tissue grafts: an in vivo study. Radiology 207:519–523, 1998.

    PubMed  CAS  Google Scholar 

  26. Kallmes, D. F., N. H. Fujiwara, D. Yuen, D. Dai, and S. T. Li. A collagen-based coil for embolization of saccular aneurysms in a New Zealand white rabbit model. Am. J. Neuroradiol. 24:591–596, 2003.

    PubMed  Google Scholar 

  27. Kampmann, C., R. Brzezinska, M. Abidini, A. Wenzel, C. Wippermann, P. Habermehl, M. Knuf, and R. Schumacher. Biodegradation of tungsten embolisation coils used in children. Pediatr. Radiol. 32:839–843, 2002.

    Article  PubMed  Google Scholar 

  28. Kumar, V., A. Abbas, N. Fausto, and R. Mitchell. Robbins Basic Pathology. Philadelphia, PA: Saunders Elsevier, 946 pp., 2007.

  29. Linn, F. H. H., G. J. E. Rinkel, A. Algra, and J. Van Gijn. Incidence of subarachnoid hemorrhage: role of region, year, and rate of computed tomography: a meta-analysis. Stroke 27:625–629, 1996.

    Article  PubMed  CAS  Google Scholar 

  30. Metcalfe, A., A. C. Desfaits, I. Salazkin, L. Yahia, W. M. Sokolowski, and J. Raymond. Cold hibernated elastic memory foams for endovascular interventions. Biomaterials 24:491–497, 2003.

    Article  PubMed  CAS  Google Scholar 

  31. Molyneux, A. J., R. S. C. Kerr, L. M. Yu, M. Clarke, M. Sneade, J. A. Yarnold, and P. Sandercock. International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet 366:809–817, 2005.

    Article  PubMed  Google Scholar 

  32. Murayama, Y., Y. L. Nien, G. Duckwiler, Y. P. Gobin, R. Jahan, J. Frazee, N. Martin, and F. ViÃuela. Guglielmi detachable coil embolization of cerebral aneurysms: 11 years’ experience. J. Neurosurg. 98:959–966, 2003.

    Article  PubMed  Google Scholar 

  33. Nam, P. H., P. Maiti, M. Okamoto, T. Kotaka, T. Nakayama, M. Takada, M. Ohshima, A. Usuki, N. Hasegawa, and H. Okamoto. Foam processing and cellular structure of polypropylene/clay nanocomposites. Polym. Eng. Sci. 42:1907–1918, 2002.

    Article  CAS  Google Scholar 

  34. Ortega, J., D. Maitland, T. Wilson, W. Tsai, O. Savas, and D. Saloner. Vascular dynamics of a shape memory polymer foam aneurysm treatment technique. Ann. Biomed. Eng. 35:1870–1884, 2007.

    Article  PubMed  Google Scholar 

  35. Peuster, M., C. Fink, and C. von Schnakenburg. Biocompatibility of corroding tungsten coils: in vitro assessment of degradation kinetics and cytotoxicity on human cells. Biomaterials 24:4057–4061, 2003.

    Article  PubMed  CAS  Google Scholar 

  36. Raymond, J., F. Guilbert, A. Weill, S. A. Georganos, L. Juravsky, A. Lambert, J. Lamoureux, M. Chagnon, and D. Roy. Long-term angiographic recurrences after selective endovascular treatment of aneurysms with detachable coils. Stroke 34:1398–1403, 2003.

    Article  PubMed  Google Scholar 

  37. Saatci, I., H. S. Çekirge, M. M. Firat, F. Balkanci, T. Özgen, V. Bertan, and S. Saglam. Placement of mechanically detachable spiral coils in the endovascular treatment of intracranial aneurysms work in progress. J. Vasc. Interv. Radiol. 7:75–79, 1996.

    Article  PubMed  CAS  Google Scholar 

  38. Saha, M. C., M. E. Kabir, and S. Jeelani. Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles. Mater. Sci. Eng. C 479:213–222, 2008.

    Article  Google Scholar 

  39. Small, W., E. Gjersing, J. L. Herberg, T. S. Wilson, and D. J. Maitland. Magnetic resonance flow velocity and temperature mapping of a shape memory polymer foam device. Biomed. Eng. Online 8:42, 2009.

    Article  PubMed  Google Scholar 

  40. Sokolowski, W., A. Metcalfe, S. Hayashi, L. Yahia, and J. Raymond. Medical applications of shape memory polymers. Biomed. Mater. 2:S23–S27, 2007.

    Article  PubMed  CAS  Google Scholar 

  41. van der Schaaf, I., A. Algra, M. J. Wermer, A. Molyneux, M. Clarke, J. van Gijn, and G. Rinkel. Endovascular coiling versus neurosurgical clipping for patients with aneurysmal subarachnoid hemorrhage. Stroke 37:572–573, 2006.

    Article  Google Scholar 

  42. Wardlaw, J. M., and P. M. White. The detection and management of unruptured intracranial aneurysms. Brain 123:205–221, 2000.

    Article  PubMed  Google Scholar 

  43. Whittle, P., and A. L. Gilchrist. The psychophysics of contrast brightness. In: Lightness, Brightness, and Transparency Anonymous. Hillsdale, NJ: Lawrence Erlbaum Associates, 1994, pp. 35–110.

  44. Willinsky, R. A. Detachable coils to treat intracranial aneurysms. CMAJ 161:1136, 1999.

    PubMed  CAS  Google Scholar 

  45. Wilson, T. S., J. P. Bearinger, J. L. Herberg, J. E. Marion III, W. J. Wright, C. L. Evans, and D. J. Maitland. Shape memory polymers based on uniform aliphatic urethane networks. J. Appl. Polym. Sci. 106:540–551, 2007.

    Article  CAS  Google Scholar 

  46. Wilson, T. S., and D. J. Maitland. Shape memory polymer foams for endovascular therapies. 2005/0075405, 2005.

  47. Wilson, T. S., W. Small, W. J. Benett, J. P. Bearinger, and D. J. Maitland. Shape memory polymer therapeutic devices for stroke. Proc. SPIE 6007:157–164, 2005.

    Google Scholar 

  48. Yu, S. C. H., W. K. So, A. C. S. Chung, K. T. Lee, and G. K. C. Wong. A Compartmentalized volumetric system for outcome analysis of coiled cerebral aneurysms: aneurysm-coil mass-neck outcome assessment system. Neurosurgery 64:149–155; 149, 2009.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health/National Institute of Biomedical Imaging and Bioengineering Grant R01EB000462. We would like to thank Amanda Connor, Josh Bergerson, Casey McCurrin, Stephen Darrouzet, Brent Volk and Keith Hearon for their technical support on this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan J. Maitland.

Additional information

Associate Editor Scott I. Simon oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez, J.N., Yu, YJ., Miller, M.W. et al. Opacification of Shape Memory Polymer Foam Designed for Treatment of Intracranial Aneurysms. Ann Biomed Eng 40, 883–897 (2012). https://doi.org/10.1007/s10439-011-0468-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0468-1

Keywords

Navigation