Skip to main content

Advertisement

Log in

Macrophages as Cell-Based Delivery Systems for Nanoshells in Photothermal Therapy

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Site-specific delivery of nanoparticles poses a significant challenge, especially in the brain where the blood–brain barrier prevents the entry of most therapeutic compounds including nanoparticle-based anti-cancer agents. In this context, the use of macrophages as vectors for the delivery of gold–silica nanoshells to infiltrating gliomas will be reviewed in this article. Gold–silica nanoshells are readily phagocytosed by macrophages without any apparent toxic effects, and the results of in vitro studies have demonstrated the migratory potential of nanoshell-loaded macrophages in human glioma spheroids. Of particular interest is the observation that, after near-infrared exposure of spheroids containing nanoshell-loaded macrophages, sufficient heat was generated to suppress spheroid growth. Collectively, these findings demonstrate the potential of macrophages as nanoshell delivery vectors for photothermal therapy of gliomas, and they certainly provide the basis for future animal studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. American Cancer Society. Cancer Facts and Figures, 2010.

  2. Baek, S. K., A. R. Makkouk, T. Krasieva, C. H. Sun, S. J. Madsen, and H. Hirschberg. Photothermal treatment of glioma: an in vitro study of macrophage-mediated delivery of gold nanoshells. J. Neurooncol. Epub ahead of print.

  3. Ballabh, P., A. Braun, and M. Nedergaard. The blood–brain barrier: an overview: structure, regulation and clinical implications. Neurobiol. Dis. 16:1–13, 2004.

    Article  PubMed  CAS  Google Scholar 

  4. Beduneau, A., Z. Ma, C. B. Grotepas, A. Kabanov, B. E. Rabinow, N. Gong, R. L. Mosley, H. Dou, M. D. Boska, and H. E. Gendelman. Facilitated monocyte-macrophage uptake and tissue distribution of superparamagnetic iron-oxide nanoparticles. PLoS One 4:e4343, 2009.

    Article  PubMed  Google Scholar 

  5. Bernardi, R. J., A. R. Lowery, P. A. Thompson, S. M. Blaney, and J. L. West. Immunonanoshells for targeted photothermal ablation of medulloblastoma and glioma: an in vitro evaluation using human cell lines. J. Neurooncol. 86:165–172, 2008.

    Article  PubMed  Google Scholar 

  6. Carson, M. J., J. Crane, and A. X. Xie. Modeling CNS microglia: the quest to identify predictive models. Drug Discov. Today Dis. Models. 5:19–25, 2008.

    Article  PubMed  Google Scholar 

  7. Choi, M. R., K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare. A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors. Nano Lett. 7:3759–3765, 2007.

    Article  PubMed  CAS  Google Scholar 

  8. Cuenca, A. G., H. Jiang, S. N. Hochwald, M. Delano, W. G. Cance, and S. R. Grobmyer. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer. 107:459–466, 2006.

    Article  PubMed  CAS  Google Scholar 

  9. Curley, S. A., P. Cherukuri, K. Briggs, C. R. Patra, M. Upton, E. Dolson, and P. Mukherjee. Nonivasive radiofrequency field-induced hyperthermic cytotoxicity in human cancer cells using cetuximab-targeted gold nanoparticles. J. Exp. Ther. Oncol. 7:313–326, 2008.

    PubMed  CAS  Google Scholar 

  10. Cushing, H. Intracranial tumors: notes upon a series of two thousand verified cases with surgical mortality percentages pertaining thereto. Springfield, IL: Charles C. Thomas, 1932.

    Google Scholar 

  11. Day, E. S., P. A. Thompson, L. Zhang, N. A. Lewinski, N. Ahmed, R. A. Drezek, S. M. Blaney, and J. L. West. Nanoshell-mediated photothermal therapy improves survival in a murine glioma model. J. Neurooncol. Epub ahead of print.

  12. Everts, M. Thermal scalpel to target cancer. Expert Rev. Med. Devices. 4:131–136, 2007.

    Article  PubMed  Google Scholar 

  13. Fleige, G., C. Nolte, M. Synowitz, F. Seeberger, H. Kettenmann, and C. Zimmer. Magnetic labeling of activated microglia in experimental gliomas. Neoplasia. 3:489–499, 2001.

    Article  PubMed  CAS  Google Scholar 

  14. Gobin, A. M., J. J. Moon, and J. L. West. EphrinA 1-targeted nanoshells for photothermal ablation of prostate cancer cells. Int. J. Nanomed. 3:351–358, 2008.

    CAS  Google Scholar 

  15. Goodman, T. T., J. Chen, K. Matveev, and S. H. Pun. Spatio-temporal modeling of nanoparticle delivery to multicellular tumor spheroids. Biotechnol. Bioeng. 101:388–399, 2008.

    Article  PubMed  CAS  Google Scholar 

  16. Halas, N. J. Tuning the optical resonant properties of nanoshells. MRS Bull. 30:362–367, 2005.

    Article  CAS  Google Scholar 

  17. Hamoudeh, M., M. A. Kamleh, R. Diab, and H. Fessi. Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv. Drug Deliv. Rev. 60:1329–1346, 2008.

    Article  PubMed  CAS  Google Scholar 

  18. Hickey, V. F. Leukocyte traffic in the central nervous system: the participants and their roles. Semin. Immunol. 11:125–137, 1999.

    Article  PubMed  CAS  Google Scholar 

  19. Hirsch, L. R., R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA 100:13549–13554, 2003.

    Article  PubMed  CAS  Google Scholar 

  20. Hirschberg, H., S. K. Baek, Y. J. Kwon, C. H. Sun, and S. J. Madsen, Bypassing the blood–brain barrier: delivery of therapeutic agents by macrophages. Proc. SPIE. 7548:3Z-1, 2010.

  21. Hsiao, J. K., H. H. Chu, Y. H. Wang, C. W. Lai, P. T. Chou, S. T. Hsieh, J. L. Wang, and H. M. Liu. Macrophage physiological function after superparamagnetic iron oxide labeling. NMR Biomed. 21:820–829, 2008.

    Article  PubMed  CAS  Google Scholar 

  22. Huang, X., I. H. El-Sayed, W. Qian, and M. A. El-Sayed. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128:2115–2120, 2006.

    Article  PubMed  CAS  Google Scholar 

  23. Huang, X., P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2:681–693, 2007.

    Article  PubMed  CAS  Google Scholar 

  24. Huang, X., P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 23:217–228, 2008.

    Article  PubMed  Google Scholar 

  25. Huber, J., R. Egleton, and T. Davis. Molecular physiology and pathophysiology of tight junctions in the blood–brain barrier. Trends Neurosci. 24:719–725, 2001.

    Article  PubMed  CAS  Google Scholar 

  26. Ivascu, A., and M. Kubbies. Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J. Biomol. Screen. 11:922–932, 2006.

    Article  PubMed  CAS  Google Scholar 

  27. James, W. D., L. R. Hirsch, J. L. West, P. D. O’Neal, and J. D. Payne. Applications of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice. J. Radioanal. Nucl. Chem. 271:455–459, 2007.

    Article  CAS  Google Scholar 

  28. Kah, J. C., K. Y. Wong, K. G. Neoh, J. H. Song, J. W. Fu, S. Mhaisalkar, M. Olivo, and C. J. Sheppard. Critical parameters in the pegylation of gold nanoshells for biomedical applications: an in vitro macrophage study. J. Drug Target. 17:181–193, 2009.

    Article  PubMed  CAS  Google Scholar 

  29. Knowles, H. J., and A. L. Harris. Macrophages and the hypoxic tumour microenvironment. Front. Biosci. 12:4298–4314, 2007.

    Article  PubMed  CAS  Google Scholar 

  30. Liu, S. Y., Z. S. Liang, F. Gao, S. F. Luo, and G. Q. Lu. In vitro photothermal study of gold nanoshells functionalized with small targeting peptides to liver cancer cells. J. Mater. Sci. Mater. Med. 21:665–674, 2009.

    Article  PubMed  CAS  Google Scholar 

  31. Loo, C., L. Hirsch, M. H. Lee, E. Chang, J. West, N. Halas, and R. Drezek. Gold nanoshell bioconjugates for molecular imaging in living cells. Opt. Lett. 30:1012–1014, 2005.

    Article  PubMed  CAS  Google Scholar 

  32. Loo, C., A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat. 3:33–40, 2004.

    PubMed  CAS  Google Scholar 

  33. Lowery, A. R., A. M. Gobin, E. S. Day, N. J. Halas, and J. L. West. Immunonanoshells for targeted photothermal ablation of tumor cells. Int. J. Nanomed. 1:149–154, 2006.

    Article  CAS  Google Scholar 

  34. Madsen, S. J., E. Angell-Petersen, S. Spetalen, S. W. Carper, S. A. Ziegler, and H. Hirschberg. Photodynamic therapy of newly implanted glioma cells in the rat brain. Lasers Surg. Med. 38:540–548, 2006.

    Article  PubMed  Google Scholar 

  35. Madsen, S. J., C. H. Sun, B. J. Tromberg, V. Cristini, N. DeMagalhaes, and H. Hirschberg. Multicell tumor spheroids in photodynamic therapy. Lasers Surg. Med. 38:555–564, 2006.

    Article  PubMed  Google Scholar 

  36. Maeda, H. The enhanced permeability and retention effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzym. Regul. 41:189–207, 2001.

    Article  CAS  Google Scholar 

  37. Martin, V., D. Liu, and C. Gomez-Manzano. Encountering and advancing through antiangiogenesis therapy for gliomas. Curr. Pharm. Des. 15:353–364, 2009.

    Article  PubMed  CAS  Google Scholar 

  38. Metz, S., G. Bonaterra, M. Rudelius, M. Settles, E. J. Rummeny, and H. E. Daldrup-Link. Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur. Radiol. 14:1851–1858, 2004.

    Article  PubMed  Google Scholar 

  39. Murdcoch, C., and C. E. Lewis. Macrophage migration and gene expression in response to tumor hypoxia. Int. J. Cancer. 117:701–708, 2005.

    Article  Google Scholar 

  40. O’Neal, D. P., L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 209:171–176, 2004.

    Article  PubMed  Google Scholar 

  41. Oldenburg, S. J., R. D. Averitt, and S. L. Westcott. Nanoengineering of optical resonances. Chem. Phys. Lett. 288:243–247, 1998.

    Article  CAS  Google Scholar 

  42. Oldenburg, S. J., J. B. Jackson, S. L. Westcott, and N. J. Halas. Infrared extinction properties of gold nanoshells. Appl. Phys. Lett. 75:2897–2899, 1999.

    Article  CAS  Google Scholar 

  43. Oude Engberink, R. D., E. L. Blezer, E. I. Hoff, S. M. van der Pol, A. van der Toorn, R. M. Dijkhuizen, and H. E. de Vries. MRI of monocyte infiltration in an animal model of neuroinflammation using SPIO-labeled monocytes or free USPIO. J. Cereb. Blood Flow Metab. 28:841–851, 2007.

    Article  PubMed  Google Scholar 

  44. Owen, M. R., H. M. Byrne, and C. E. Lewis. Mathematical modeling of the use of macrophages as vehicles for drug delivery to hypoxic tumour sites. J. Theor. Biol. 226:377–391, 2004.

    Article  PubMed  CAS  Google Scholar 

  45. Raynal, I., P. Prigent, S. Peyramaure, A. Najid, C. Rebuzzi, and C. Corot. Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10. Invest. Radiol. 39:56–63, 2004.

    Article  PubMed  CAS  Google Scholar 

  46. Schwartz, J. A., A. M. Shetty, R. E. Price, R. J. Stafford, J. C. Wang, R. K. Uthamanthil, K. Pham, R. J. McNichols, C. L. Coleman, and J. D. Payne. Feasibility study of particle-assisted laser ablation of brain tumors in orthotopic canine model. Cancer Res. 69:1659–1667, 2009.

    Article  PubMed  CAS  Google Scholar 

  47. Stern, J. M., J. Stanfield, Y. Lotan, S. Park, J. T. Hsieh, and J. A. Cadeddu. Efficacy of laser-activated gold nanoshells in ablating prostate cancer cells in vitro. J. Endourol. 21:939–943, 2007.

    Article  PubMed  Google Scholar 

  48. Terentyuk, G. S., G. N. Maslyakova, L. V. Suleymanova, N. G. Khlebtsov, B. N. Khlebtsov, G. G. Akchurin, I. L. Maksimova, and V. V. Tuchin. Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy. J. Biomed. Opt. 14:021016, 2009.

    Article  PubMed  Google Scholar 

  49. Valable, S., E. L. Barbier, M. Bernaudin, S. Roussel, C. Segebarth, E. Petit, and C. Remy. In vivo MRI tracking of exogenous monocytes/macrophages targeting brain tumors in a rat model of glioma. Neuroimage. 40:973–983, 2008.

    Article  PubMed  Google Scholar 

  50. Wallner, K. E., J. H. Galicich, G. Krol, E. Arbit, and M. G. Malkin. Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int. J. Radiat. Oncol. Biol. Phys. 16:1405–1409, 1989.

    Article  PubMed  CAS  Google Scholar 

  51. Wu, J., S. Yang, H. Luo, L. Zeng, L. Ye, and Y. Lu. Quantitative evaluation of monocyte transmigration into the brain following chemical opening of the blood-brain barrier in mice. Brain Res. 1098:79–85, 2006.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the Health Sciences System of the Nevada System of Higher Education through the Inter-Institutional Biomedical Research Activities Fund (IBRAF). This study was also supported by the Laser Microbeam and Medical Program (LAMMP) and the Chao Cancer Center Optical Biology Shared Resource at the University of California, Irvine. Henry Hirschberg is grateful for the support received from the Norwegian Radiumhospital Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steen J. Madsen.

Additional information

Associate Editor Bahman Anvari oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madsen, S.J., Baek, SK., Makkouk, A.R. et al. Macrophages as Cell-Based Delivery Systems for Nanoshells in Photothermal Therapy. Ann Biomed Eng 40, 507–515 (2012). https://doi.org/10.1007/s10439-011-0415-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0415-1

Keywords

Navigation