Skip to main content
Log in

A Regional Blood Flow Model for β2-Microglobulin Kinetics and for Simulating Intra-dialytic Exercise Effect

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 16 March 2012

Abstract

A kinetic model based on first principles, for β2-microglobulin, is presented to obtain precise parameter estimates for individual patient. To reduce the model complexity, the number of model parameters was reduced using a priori identifiability analysis. The model validity was confirmed with the clinical data of ten renal patients on post-dilution hemodiafiltration. The model fit resulted in toxin distribution volume (V d) of 14.22 ± 0.75 L, plasma fraction in extracellular compartment (f P) of 0.39 ± 0.03, and inter-compartmental clearance of 44 ± 4.1 mL min−1. Parameter estimates suggest that V d and f P are much higher in hemodialysis patients than in normal subjects. The developed model predicts larger removed toxin mass than that predicted by the two-pool model. On the application front, the developed model was employed to explain the effect of intra-dialytic exercise on toxin removal. The presented simulations suggest that intra-dialytic exercise not only increases the blood flow to low flow region, but also decreases the inter-compartmental resistance. Combined, they lead to increased toxin removal during dialysis and reduced post-dialysis rebound. The developed model can assist in suggesting the improved dialysis dose based on β2-microglobulin, and also lead to quantitative inclusion of intra-dialytic exercise in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

α :

Fluid intake rate during inter-dialysis period (L min−1)

C art :

Arterial toxin concentration (measured concentration) (mg L−1)

C mn :

Toxin concentration in mth region, nth compartment (mg L−1) m \( \in \) [h,l], n \( \in \) [p,i]

CO:

Cardiac output (L min−1)

e :

Fluid volume fraction of extracellular space

f m :

Blood flow fraction to mth region

f P :

Fluid volume fraction of plasma compartment in extracellular space

\( G_{{\beta_{2} {\text{M}}}} \) :

β2-Microglobulin generation rate (mg min−1)

HCT:

Hematocrit

K D :

Dialyzer clearance (mL min−1)

K ip :

Inter-compartmental mass transfer coefficient (mL min−1)

k m :

Fluid volume fraction of mth region

K NR :

Non-renal clearance (mL min−1)

Q b/Q bp :

Blood/plasma flow to dialyzer (L min−1)

Q h/Q l :

Systemic blood flow to high/low flow region (L min−1)

Q hp/Q lp :

Systemic plasma flow to high/low flow region (L min−1)

Q s :

Systemic plasma flow (L min−1)

Q uf :

Constant ultrafiltration rate (L min−1)

V d :

Toxin distribution volume (L)

V mn :

Fluid volume in mth region, nth compartment (L)

Z :

Scaled sensitivity matrix

h/l:

High/Low flow region

p/i:

Plasma/Interstitium compartment

References

  1. Canaud, B., M. Morena, J. P. Cristol, and D. Krieter. β2-Microglobulin, a uremic toxin with a double meaning. Kidney Int. 69:1297–1299, 2006.

    Article  PubMed  CAS  Google Scholar 

  2. Cheung, A. K., M. V. Rocco, G. Yan, J. K. Leypoldt, N. W. Levin, T. Greene, L. Agodoa, J. Bailey, G. J. Beck, W. Clark, A. S. Levey, D. B. Ornt, G. Schulman, S. Schwab, B. Teehan, and G. Eknoyan. Serum β2-microglobulin levels predict mortality in dialysis patients: results of the HEMO study. J. Am. Soc. Nephrol. 17:546–555, 2006.

    Article  PubMed  CAS  Google Scholar 

  3. Daugirdas, J., D. Schneditz, and D. Leehey. Effect of access recirculation on the modeled urea distribution volume. Am. J. Kidney Dis. 27:512–518, 1996.

    Article  PubMed  CAS  Google Scholar 

  4. Debowska, M., B. Lindholm, and J. Waniewski. Adequacy indices for dialysis in acute renal failure: kinetic modeling. Artif. Organs 34:412–419, 2010.

    Article  PubMed  Google Scholar 

  5. Debowska, M., J. Waniewski, and B. Lindholm. Bimodal dialysis: theoretical and computational investigations of adequacy indices for combined use of peritoneal dialysis and hemodialysis. ASAIO J. 53:566–575, 2007.

    Article  PubMed  Google Scholar 

  6. Drüeke, T. B., and Z. A. Massy. Progress in uremis toxin research: β2-microglobulin. Semin. Dial. 22:378–380, 2009.

    Article  PubMed  Google Scholar 

  7. Farrell, J., and B. Bastani. Beta 2-microglobulin amyloidosis in chronic dialysis patients: a case report and review of the literature. J. Am. Soc. Nephrol. 8:509–514, 1997.

    PubMed  CAS  Google Scholar 

  8. George, T. O., A. Priester-Coary, G. Dunea, D. Schneditz, N. Tarif, and J. T. Daugirdas. Cardiac output and urea kinetics in dialysis patients: evidence supporting the regional blood flow model. Kidney Int. 50:1273–1277, 1996.

    Article  PubMed  CAS  Google Scholar 

  9. Harper, S. J., C. R. V. Tomson, and D. O. Bates. Human uremic plasma increases microvascular permeability to water and proteins in vivo. Kidney Int. 61:1416–1422, 2002.

    Article  PubMed  CAS  Google Scholar 

  10. Ishibe, S., and A. J. Peixoto. Methods of assessment of volume status and intercompartmental fluid shifts in hemodialysis patients: implications in clinical practice. Semin. Dial. 17:37–43, 2004.

    Article  PubMed  Google Scholar 

  11. Kanamori, T., and K. Sakai. An estimate of β2-microglobulin deposition rate in uremic patients on hemodialysis using a mathematical kinetic model. Kidney Int. 47:1453–1457, 1995.

    Article  PubMed  CAS  Google Scholar 

  12. Korohoda, P. Flow based two-compartment models—a comparative computational study. World Congress on Medical Physics and Biomedical Engineering. Berlin, Heidelberg, Munich, Germany: Springer, pp. 838–841, 2009.

    Google Scholar 

  13. Leypoldt, J. K., A. K. Cheung, and R. B. Deeter. Rebound kinetics of β2-microglobulin after hemodialysis. Kidney Int. 56:1571–1577, 1999.

    Article  PubMed  CAS  Google Scholar 

  14. Maeda, K., T. Shinzato, T. Ota, H. Kobayakawa, I. Takai, Y. Fujita, and H. Morita. Beta-2 microglobulin generation rate and clearance rate in maintenance hemodialysis patients. Nephron 56:118–125, 1990.

    Article  PubMed  CAS  Google Scholar 

  15. Miyata, T., M. Jadoul, K. Kurokawa, and C. Van Ypersele de Strihou. Beta-2 microglobulin in renal disease. J. Am. Soc. Nephrol. 9:1723–1735, 1998.

    PubMed  CAS  Google Scholar 

  16. Okuno, S., E. Ishimura, K. Kohno, Y. Fujino-Katoh, Y. Maeno, T. Yamakawa, M. Inaba, and Y. Nishizawa. Serum β2-microglobulin level is a significant predictor of mortality in maintenance haemodialysis patients. Nephrol. Dial. Transplant. 24:571–577, 2009.

    Article  PubMed  CAS  Google Scholar 

  17. Parsons, T. L., E. B. Toffelmire, and C. E. King-Van Vlack. Exercise training during hemodialysis improves dialysis efficacy and physical performance. Arch. Phys. Med. Rehabil. 87:680–687, 2006.

    Article  PubMed  Google Scholar 

  18. Schneditz, D., A. M. Kaufman, H. D. Polaschegg, N. W. Levin, and J. T. Daugirdas. Cardiopulmonary recirculation during hemodialysis. Kidney Int. 42:1450–1456, 1992.

    Article  PubMed  CAS  Google Scholar 

  19. Schneditz, D., D. Platzer, and J. T. Daugirdas. A diffusion-adjusted regional blood flow model to predict solute kinetics during haemodialysis. Nephrol. Dial. Transplant. 24:2218–2224, 2009.

    Article  PubMed  Google Scholar 

  20. Schneditz, D., J. C. Van Stone, and J. T. Daugirdas. A regional blood circulation alternative to in-series two compartment urea kinetic modeling. ASAIO J. 39:M573–M577, 1993.

    Article  PubMed  CAS  Google Scholar 

  21. Smye, S., E. Lindley, and E. Will. Simulating the effect of exercise on urea clearance in hemodialysis. J. Am. Soc. Nephrol. 9:128–132, 1998.

    PubMed  CAS  Google Scholar 

  22. Stiller, S., X. Q. Xu, N. Gruner, J. Vienken, and H. Mann. Validation of a two-pool model for the kinetics of β2-microglobulin. Int. J. Artif. Organs 25:411–420, 2002.

    PubMed  CAS  Google Scholar 

  23. Sunny, E., T. An, S. Rita De, M. Bart, D. Peter Paul De, V. Pascal, and V. Raymond. Complex compartmental behavior of small water-soluble uremic retention solutes: evaluation by direct measurements in plasma and erythrocytes. Am. J. Kidney Dis. 50:279–288, 2007.

    Article  Google Scholar 

  24. Vaithilingam, I., K. R. Polkinghorne, R. C. Atkins, and P. G. Kerr. Time and exercise improve phosphate removal in hemodialysis patients. Am. J. Kidney Dis. 43:85–89, 2004.

    Article  PubMed  CAS  Google Scholar 

  25. Vanholder, R., S. Eloot, and W. Van Biesen. Do we need new indicators of dialysis adequacy based on middle-molecule removal? Nat. Clin. Pract. Nephrol. 4:174–175, 2008.

    Article  PubMed  CAS  Google Scholar 

  26. Ward, R. A., T. Greene, B. Hartmann, and W. Samtleben. Resistance to intercompartmental mass transfer limits β2-microglobulin removal by post-dilution hemodiafiltration. Kidney Int. 69:1431–1437, 2006.

    PubMed  CAS  Google Scholar 

  27. Watson, P., I. Watson, and R. Batt. Total body water volumes for adult males and females estimated from simple anthropometric measurements. Am. J. Clin. Nutr. 33:27–39, 1980.

    PubMed  CAS  Google Scholar 

  28. Yao, K. Z., B. M. Shaw, B. Kou, K. B. McAuley, and D. W. Bacon. Modeling ethylene/butene copolymerization with multi-site catalysts: parameter estimability and experimental design. Polym. React. Eng. 11:563–588, 2003.

    Article  CAS  Google Scholar 

  29. Yashiro, M., H. Watanabe, and E. Muso. Simulation of post-dialysis urea rebound using regional flow model. Clin. Exp. Nephrol. 8:139–145, 2004.

    Article  PubMed  CAS  Google Scholar 

  30. Yavuz, A., C. Tetta, F. F. Ersoy, V. D’intini, R. Ratanarat, M. D. Cal, M. Bonello, V. Bordoni, G. Salvatori, E. Andrikos, G. Yakupoglu, N. W. Levin, and C. Ronco. Uremic toxins: a new focus on an old subject. Semin. Dial. 18:203–211, 2005.

    Article  PubMed  Google Scholar 

  31. Ziolko, M., J. A. Pietrzyk, and J. Grabska-Chrzastowska. Accuracy of hemodialysis modeling. Kidney Int. 57:1152–1163, 2000.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Richard A. Ward (University of Louisville, USA) for providing the de-identified patient data for testing the developed model. We also acknowledge Dr. Titus Lau and Dr. Kheng Boon Lim (National University Hospital, Singapore) for their valuable comments and suggestions.

Disclosure

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshminarayanan Samavedham.

Additional information

Associate Editor Gerald Saidel oversaw the review of this article.

An erratum to this article can be found at http://dx.doi.org/10.1007/s10439-012-0547-y.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 102 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maheshwari, V., Samavedham, L. & Rangaiah, G.P. A Regional Blood Flow Model for β2-Microglobulin Kinetics and for Simulating Intra-dialytic Exercise Effect. Ann Biomed Eng 39, 2879–2890 (2011). https://doi.org/10.1007/s10439-011-0383-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0383-5

Keywords

Navigation