Skip to main content
Log in

Rapid Microfluidic Perfusion Enabling Kinetic Studies of Lipid Ion Channels in a Bilayer Lipid Membrane Chip

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

There is growing recognition that lipids play key roles in ion channel physiology, both through the dynamic formation and dissolution of lipid ion channels and by indirect regulation of protein ion channels. Because existing technologies cannot rapidly modulate the local (bio)chemical conditions at artificial bilayer lipid membranes used in ion channel studies, the ability to elucidate the dynamics of these lipid–lipid and lipid–protein interactions has been limited. Here we demonstrate a microfluidic system supporting exceptionally rapid perfusion of reagents to an on-chip bilayer lipid membrane, enabling the responses of lipid ion channels to dynamic changes in membrane boundary conditions to be probed. The thermoplastic microfluidic system allows initial perfusion of reagents to the membrane in less than 1 s, and enables kinetic behaviors with time constants below 10 s to be directly measured. Application of the platform is demonstrated toward kinetic studies of ceramide, a biologically important lipid known to self-assemble into transmembrane ion channels, in response to dynamic treatments of small ions (La3+) and proteins (Bcl-xL mutant). The results reveal the broader potential of the technology for studies of membrane biophysics, including lipid ion channel dynamics, lipid–protein interactions, and the regulation of protein ion channels by lipid micro domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Anishkin, A., S. Sukharev, and M. Colombini. Searching for the molecular arrangement of transmembrane ceramide channels. Biophys. J. 90:2414–2426, 2006.

    Article  PubMed  CAS  Google Scholar 

  2. Antonov, V. F., V. V. Petrov, A. A. Molnar, D. A. Predvoditelev, and A. S. Ivanov. Appearance of single-ion channels in unmodified lipid bilayer-membranes at the phase-transition temperature. Nature 283:585–586, 1980.

    Article  PubMed  CAS  Google Scholar 

  3. Antonov, V. F., E. Y. Smirnova, and E. V. Shevchenko. Electric-field increases the phase-transition temperature in the bilayer-membrane of phosphatidic-acid. Chem. Phys. Lipids 52:251–257, 1990.

    Article  PubMed  CAS  Google Scholar 

  4. Bernardi, P., L. Scorrano, R. Colonna, V. Petronilli, and F. Di Lisa. Mitochondria and cell death—mechanistic aspects and methodological issues. Eur. J. Biochem. 264:687–701, 1999.

    Article  PubMed  CAS  Google Scholar 

  5. Billen, L. P., C. L. Kokoski, J. F. Lovell, B. Leber, and D. W. Andrews. Bcl-XL inhibits membrane permeabilization by competing with Bax. PLoS Biol. 6:e147, 2008.

    Article  PubMed  Google Scholar 

  6. Boheim, G., W. Hanke, and H. Eibl. Lipid phase-transition in planar bilayer-membrane and its effect on carrier-mediated and pore-mediated ion-transport. Proc. Natl Acad. Sci. Biol. 77:3403–3407, 1980.

    Article  CAS  Google Scholar 

  7. Chen, C. F., J. Liu, L. P. Hromada, C. W. Tsao, C. C. Chang, and D. L. DeVoe. High-pressure needle interface for thermoplastic microfluidics. Lab Chip 9:50–55, 2009.

    Article  PubMed  CAS  Google Scholar 

  8. Cohen, F. S., M. H. Akabas, J. Zimmerberg, and A. Finkelstein. Parameters affecting the fusion of unilamellar phospholipid vesicles with planar bilayer membranes. J. Cell Biol. 98:1054–1062, 1984.

    Article  PubMed  CAS  Google Scholar 

  9. Cohen, F. S., J. Zimmerberg, and A. Finkelstein. Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. II. Incorporation of a vesicular membrane marker into the planar membrane. J. Gen. Physiol. 75:251–270, 1980.

    Article  PubMed  CAS  Google Scholar 

  10. Colombini, M. Ceramide channels and their role in mitochondria-mediated apoptosis. Biochim. Biophys. Acta 1797:1239–1244, 2010.

    Article  PubMed  CAS  Google Scholar 

  11. Crompton, M. The mitochondrial permeability transition pore and its role in cell death. Biochem. J. 341:233–249, 1999.

    Article  PubMed  CAS  Google Scholar 

  12. Dart, C. Lipid microdomains and the regulation of ion channel function. J. Physiol. 588:3169–3178, 2010.

    Article  PubMed  CAS  Google Scholar 

  13. Epshtein, Y., A. P. Chopra, A. Rosenhouse-Dantsker, G. B. Kowalsky, D. E. Logothetis, and I. Levitan. Identification of a C-terminus domain critical for the sensitivity of Kir2.1 to cholesterol. Proc. Natl Acad. Sci. USA 106:8055–8060, 2009.

    Article  PubMed  CAS  Google Scholar 

  14. Fantini, J., and F. J. Barrantes. Sphingolipid/cholesterol regulation of neurotransmitter receptor conformation and function. Biochim. Biophys. Acta 1788:2345–2361, 2009.

    Article  PubMed  CAS  Google Scholar 

  15. Fertig, N., R. H. Blick, and J. C. Behrends. Whole cell patch clamp recording performed on a planar glass chip. Biophys. J. 82:3056–3062, 2002.

    Article  PubMed  CAS  Google Scholar 

  16. Fertig, N., C. Meyer, R. H. Blick, C. Trautmann, and J. C. Behrends. Microstructured glass chip for ion-channel electrophysiology. Phys. Rev. E 64:040901, 2001.

    Article  CAS  Google Scholar 

  17. Funakoshi, K., H. Suzuki, and S. Takeuchi. Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis. Anal. Chem. 78:8169–8174, 2006.

    Article  PubMed  CAS  Google Scholar 

  18. Ganesan, V., and M. Colombini. Regulation of ceramide channels by Bcl-2 family proteins. FEBS Lett. 584:2128–2134, 2010.

    Article  PubMed  CAS  Google Scholar 

  19. Ganesan, V., M. N. Perera, D. Colombini, D. Datskovskiy, K. Chadha, and M. Colombini. Ceramide and activated Bax act synergistically to permeabilize the mitochondrial outer membrane. Apoptosis 15:553–562, 2010.

    Article  PubMed  CAS  Google Scholar 

  20. Hausmann, G., L. A. O’Reilly, R. van Driel, J. G. Beaumont, A. Strasser, J. M. Adams, and D. C. Huang. Pro-apoptotic apoptosis protease-activating factor 1 (Apaf-1) has a cytoplasmic localization distinct from Bcl-2 or Bcl-x(L). J. Cell Biol. 149:623–634, 2000.

    Article  PubMed  CAS  Google Scholar 

  21. Heimburg, T. Lipid ion channels. Biophys. Chem. 150:2–22, 2010.

    Article  PubMed  CAS  Google Scholar 

  22. Heimburg, T., and A. D. Jackson. The thermodynamics of general anesthesia. Biophys. J. 92:3159–3165, 2007.

    Article  PubMed  CAS  Google Scholar 

  23. Holden, M. A., and H. Bayley. Direct introduction of single protein channels and pores into lipid bilayers. J. Am. Chem. Soc. 127:6502–6503, 2005.

    Article  PubMed  CAS  Google Scholar 

  24. Holden, M. A., L. Jayasinghe, O. Daltrop, A. Mason, and H. Bayley. Direct transfer of membrane proteins from bacteria to planar bilayers for rapid screening by single-channel recording. Nat. Chem. Biol. 2:314–318, 2006.

    Article  PubMed  CAS  Google Scholar 

  25. Hromada, L. P., B. J. Nablo, J. J. Kasianowicz, M. A. Gaitan, and D. L. DeVoe. Single molecule measurements within individual membrane-bound ion channels using a polymer-based bilayer lipid membrane chip. Lab Chip 8:602–608, 2008.

    Article  PubMed  CAS  Google Scholar 

  26. Hsu, Y. T., K. G. Wolter, and R. J. Youle. Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis. Proc. Natl Acad. Sci. USA 94:3668–3672, 1997.

    Article  PubMed  CAS  Google Scholar 

  27. Jeong, S. Y., B. Gaume, Y. J. Lee, Y. T. Hsu, S. W. Ryu, S. H. Yoon, and R. J. Youle. Bcl-x(L) sequesters its C-terminal membrane anchor in soluble, cytosolic homodimers. EMBO J. 23:2146–2155, 2004.

    Article  PubMed  CAS  Google Scholar 

  28. Kasianowicz, J. J., E. Brandin, D. Branton, and D. W. Deamer. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93:13770–13773, 1996.

    Article  PubMed  CAS  Google Scholar 

  29. Kaufmann, K., and I. Silman. Proton-induced ion channels through lipid bilayer-membranes. Naturwissenschaften 70:147–149, 1983.

    Article  PubMed  CAS  Google Scholar 

  30. Kaufmann, K., and I. Silman. The induction by protons of ion channels through lipid bilayer-membranes. Biophys. Chem. 18:89–99, 1983.

    Article  PubMed  CAS  Google Scholar 

  31. Kroemer, G., B. Dallaporta, and M. Resche-Rigon. The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60:619–642, 1998.

    Article  PubMed  CAS  Google Scholar 

  32. Malmstadt, N., M. A. Nash, R. F. Purnell, and J. J. Schmidt. Automated formation of lipid-bilayer membranes in a microfluidic device. Nano Lett. 6:1961–1965, 2006.

    Article  PubMed  CAS  Google Scholar 

  33. Narula, J., P. Pandey, E. Arbustini, N. Haider, N. Narula, F. D. Kolodgie, B. Dal Bello, M. J. Semigran, A. Bielsa-Masdeu, G. W. Dec, S. Israels, M. Ballester, R. Virmani, S. Saxena, and S. Kharbanda. Apoptosis in heart failure: release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc. Natl Acad. Sci. USA 96:8144–8149, 1999.

    Article  PubMed  CAS  Google Scholar 

  34. Papahadj, D., K. Jacobson, S. Nir, and T. Isac. Phase-transitions in phospholipid vesicles—fluorescence polarization and permeability measurements concerning effect of temperature and cholesterol. Biochim. Biophys. Acta 311:330–348, 1973.

    Article  Google Scholar 

  35. Patel, H. H., F. Murray, and P. A. Insel. Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annu. Rev. Pharmacol. 48:359–391, 2008.

    Article  CAS  Google Scholar 

  36. Sabra, M. C., K. Jorgensen, and O. G. Mouritsen. Lindane suppresses the lipid-bilayer permeability in the main transition region. Biochim. Biophys. Acta 1282:85–92, 1996.

    Article  PubMed  Google Scholar 

  37. Sandison, M. E., and H. Morgan. Rapid fabrication of polymer microfluidic systems for the production of artificial lipid bilayers. J. Micromech. Microeng. 15:S139–S144, 2005.

    Article  CAS  Google Scholar 

  38. Sandison, M. E., M. Zagnoni, M. Abu-Hantash, and H. Morgan. Micromachined glass apertures for artificial lipid bilayer formation in a microfluidic system. J. Micromech. Microeng. 17:S189–S196, 2007.

    Article  CAS  Google Scholar 

  39. Sandison, M. E., M. Zagnoni, and H. Morgan. Air-exposure technique for the formation of artificial lipid bilayers in microsystems. Langmuir 23:8277–8284, 2007.

    Article  PubMed  CAS  Google Scholar 

  40. Schindler, H. Formation of planar bilayers from artificial or native membrane vesicles. FEBS Lett. 122:77–79, 1980.

    Article  PubMed  CAS  Google Scholar 

  41. Simons, K., and E. Ikonen. Functional rafts in cell membranes. Nature 387:569–572, 1997.

    Article  PubMed  CAS  Google Scholar 

  42. Simons, K., and D. Toomre. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1:31–39, 2000.

    Article  PubMed  CAS  Google Scholar 

  43. Siskind, L. J., and M. Colombini. The lipids C-2- and C-16-ceramide form large stable channels—implications for apoptosis. J. Biol. Chem. 275:38640–38644, 2000.

    Article  PubMed  CAS  Google Scholar 

  44. Siskind, L. J., A. Davoody, N. Lewin, S. Marshall, and M. Colombini. Enlargement and contracture of C-2-ceramide channels. Biophys. J. 85:1560–1575, 2003.

    Article  PubMed  CAS  Google Scholar 

  45. Siskind, L. J., L. Feinstein, T. X. Yu, J. S. Davis, D. Jones, J. Choi, J. E. Zuckerman, W. Z. Tan, R. B. Hill, J. M. Hardwick, and M. Colombini. Anti-apoptotic Bcl-2 family proteins disassemble ceramide channels. J. Biol. Chem. 283:6622–6630, 2008.

    Article  PubMed  CAS  Google Scholar 

  46. Siskind, L. J., S. Fluss, M. Bui, and M. Colombini. Sphingosine forms channels in membranes that differ greatly from those formed by ceramide. J. Bioenerg. Biomembr. 37:227–236, 2005.

    Article  PubMed  CAS  Google Scholar 

  47. Siskind, L. J., R. N. Kolesnick, and M. Colombini. Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J. Biol. Chem. 277:26796–26803, 2002.

    Article  PubMed  CAS  Google Scholar 

  48. Siskind, L. J., R. N. Kolesnick, and M. Colombini. Ceramide forms channels in mitochondrial outer membranes at physiologically relevant concentrations. Mitochondrion 6:118–125, 2006.

    Article  PubMed  CAS  Google Scholar 

  49. Susin, S. A., N. Zamzami, and G. Kroemer. Mitochondria as regulators of apoptosis: doubt no more. Biochim. Biophys. Acta 1366:151–165, 1998.

    Article  PubMed  CAS  Google Scholar 

  50. Suzuki, H., K. Tabata, Y. Kato-Yamada, H. Noji, and S. Takeuchi. Planar lipid bilayer reconstitution with a micro-fluidic system. Lab Chip 4:502–505, 2004.

    Article  PubMed  CAS  Google Scholar 

  51. Suzuki, H., K. V. Tabata, H. Noji, and S. Takeuchi. Highly reproducible method of planar lipid bilayer reconstitution in polymethyl methacrylate microfluidic chip. Langmuir 22:1937–1942, 2006.

    Article  PubMed  CAS  Google Scholar 

  52. Taylor, G. Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A Math. Phys. Sci. 219:8, 1953.

    Article  Google Scholar 

  53. Trauble, H., M. Teubner, P. Woolley, and H. Eibl. Electrostatic interactions at charged lipid-membranes. 1. Effects of pH and univalent cations on membrane structure. Biophys. Chem. 4:319–342, 1976.

    Article  Google Scholar 

  54. Urbankova, E., A. Voltchenko, P. Pohl, P. Jezek, and E. E. Pohl. Transport kinetics of uncoupling proteins. Analysis of UCP1 reconstituted in planar lipid bilayers. J. Biol. Chem. 278:32497–32500, 2003.

    Article  PubMed  CAS  Google Scholar 

  55. Wiesner, D. A., J. P. Kilkus, A. R. Gottschalk, J. Quintans, and G. Dawson. Anti-immunoglobulin-induced apoptosis in WEHI 231 cells involves the slow formation of ceramide from sphingomyelin and is blocked by bcl-XL. J. Biol. Chem. 272:9868–9876, 1997.

    Article  PubMed  CAS  Google Scholar 

  56. Woodbury, D. J. Nystatin/ergosterol method for reconstituting ion channels into planar lipid bilayers. Meth. Enzymol. 294:319–339, 1999.

    Article  PubMed  CAS  Google Scholar 

  57. Woodbury, D. J., and C. Miller. Nystatin-induced liposome fusion. A versatile approach to ion channel reconstitution into planar bilayers. Biophys. J. 58:833–839, 1990.

    Article  PubMed  CAS  Google Scholar 

  58. Woodbury, D. J., and K. Rognlien. The t-SNARE syntaxin is sufficient for spontaneous fusion of synaptic vesicles to planar membranes. Cell Biol. Int. 24:809–818, 2000.

    Article  PubMed  CAS  Google Scholar 

  59. Yafuso, M., S. J. Kennedy, and A. R. Freeman. Spontaneous conductance changes, multilevel conductance states and negative differential resistance in oxidized cholesterol black lipid-membranes. J. Membr. Biol. 17:201–212, 1974.

    Article  PubMed  CAS  Google Scholar 

  60. Yethon, J. A., R. F. Epand, B. Leber, R. M. Epand, and D. W. Andrews. Interaction with a membrane surface triggers a reversible conformational change in Bax normally associated with induction of apoptosis. J. Biol. Chem. 278:48935–48941, 2003.

    Article  PubMed  CAS  Google Scholar 

  61. Zagnoni, M., M. E. Sandison, P. Marius, A. G. Lee, and H. Morgan. Controlled delivery of proteins into bilayer lipid membranes on chip. Lab Chip 7:1176–1183, 2007.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dr. Louis Hromada for input on chip fabrication, Meenu Perera for assistance with pClamp software and Vidyaramanan Ganesan for providing the Bcl-xL mutant. We thank Dr. David W. Andrews at McMaster University in Canada for providing plasmid for protein preparation. This work is supported by NIH grants R01GM072512 and R21EB011750.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don L. DeVoe.

Additional information

Associate Editor Tingrui Pan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, C., Sun, B., Colombini, M. et al. Rapid Microfluidic Perfusion Enabling Kinetic Studies of Lipid Ion Channels in a Bilayer Lipid Membrane Chip. Ann Biomed Eng 39, 2242–2251 (2011). https://doi.org/10.1007/s10439-011-0323-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0323-4

Keywords

Navigation