Skip to main content
Log in

Mechanical Loadings on Pectoral Pacemaker Implants: Correlation of In-line and Transverse Force of the Pectoralis major

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Recently we presented a method for the assessment of in vivo forces on pectoral device implants motivated from technological and clinical advancements toward smaller implantable cardiac pacemakers and the altered structural demands arising from the reduced device size. Objective of this study was the investigation of the intra-species proportionality of in-line force and transverse reaction force of the Pectoralis major for the characterization of mechanical in vivo loadings on pectoral implants. Two Chacma baboons (23.9 ± 1.2 kg) received bilaterally one chronic and one acute pectoral sub-muscular instrumented pacemaker (IPM) implant. The Pectoralis major muscle was electrically stimulated and resulting in-line and transverse muscle force were measured. The correlation of in-line force and transverse force of the Pectoralis major was investigated using linear regression analyses. The proportionality of in-line and transverse force of the Pectoralis major was found to be subject-specific (R 2 = 0.17, p < 0.003). Including morphometric parameters, i.e., length along line of action, width over implant and stress, in the regression analysis provided a strong intra-species correlation between in-line and transverse force (R 2 = 0.71, p < 10−7). The novel intra-species correlation provides a tool toward the characterization of mechanical in vivo loading conditions of pectoral device implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

CFT:

Constant frequency train

ETO:

Ethylene oxide

ICD:

Implantable cardioverter defibrillator

IPG:

Implantable pulse generator

IPM:

Implantable instrumented pacemaker

MLR:

Multiple linear regression

PC:

Personal computer

PCSA:

Physiological cross-sectional area (cm2)

RF:

Radio frequency

SLR:

Single linear regression

A IPM :

Total area of principal surface of IPM (cm2)

A Si :

Surface area of force sensor cover plate

F IL :

In-line force generated in Pectoralis major (N)

F Si :

Transverse force acting on force sensor i (N)

F T :

Transverse force acting on IPM (N)

F T,Rest :

Transverse force on IPM with animal at rest (N)

L f :

Muscle fiber length (mm)

L f,opt :

Optimal muscle fiber length (mm)

L m :

Length of Pectoralis major along the estimated line of action (mm)

M B :

Body mass of animals (kg)

M m :

Mass of Pectoralis major (g)

N :

Samples size

R 2 :

Coefficient of determination

\( R_{\rm{adj}}^{2} \) :

Adjusted coefficient of determination

t m :

Thickness of Pectoralis major at the location of the IPM implant (mm)

t m,cb :

Thickness of Pectoralis major at crossbar of the buckle force transducer (mm)

V m :

Volume of Pectoralis major (cm3)

V rest :

Sensor voltage at rest (V)

w m,cb :

Width of Pectoralis major section at crossbar of the buckle force transducer (mm)

w m,IPM :

Width of Pectoralis major over the IPM implant (mm)

ΔF T :

Difference in transverse force (N)

ρm :

Material density of Pectoralis major (g/cm3)

σm :

Stress in Pectoralis major (N/mm2)

References

  1. Antretter, H., J. Colvin, U. Schweigmann, H. Hangler, D. Hofer, K. Dunst, J. Margreiter, and G. Laufer. Special problems of pacing in children. Indian Pacing Electrophysiol. J. 3:23–33, 2003.

    PubMed  Google Scholar 

  2. Baxter, W. W., and A. D. McCulloch. In vivo finite element model-based image analysis of pacemaker lead mechanics. Med. Image Anal. 5:255–270, 2001.

    Article  CAS  PubMed  Google Scholar 

  3. Binder-Macleod, S. A., S. C. K. Lee, D. W. Russ, and L. J. Kucharski. Effects of activation pattern on human skeletal muscle fatigue. Muscle Nerve 21:1145–1152, 1998.

    Article  CAS  PubMed  Google Scholar 

  4. Cleland, J. G. F., J.-C. Daubert, E. Erdmann, N. Freemantle, D. Gras, L. Kappenberger, and L. Tavazzi. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N. Engl. J. Med. 352:1539–1549, 2005.

    Article  CAS  PubMed  Google Scholar 

  5. de Vaal, M. H. In vivo Mechanical Loading Conditions of Pectorally Implanted Cardiac Pacemakers: Feasibility of a Force Measurement System and Concept of an Animal-Human Transfer Function [MSc thesis]. Cape Town: Chris Barnard Department of Cardiothoracic Surgery, University of Cape Town, 2009.

  6. de Vaal, M. H., J. Neville, J. Scherman, P. Zilla, M. Litow, and T. Franz. The in vivo assessment of mechanical loadings on pectoral pacemaker implants. J. Biomech. DOI: 10.1016/j.jbiomech.2010.02.028, 2010.

  7. Ding, J., S. C. K. Lee, T. E. Johnston, A. S. Wexler, W. B. Scott, and S. A. Binder-Macleod. Mathematical model that predicts isometric muscle forces for individuals with spinal cord injuries. Muscle Nerve 31:702–712, 2005.

    Article  PubMed  Google Scholar 

  8. Eng, C. M., L. H. Smallwood, M. P. Rainiero, M. Lahey, S. R. Ward, and R. L. Lieber. Scaling of muscle architecture and fiber types in the rat hindlimb. J. Exp. Biol. 211:2336–2345, 2008.

    Article  PubMed  Google Scholar 

  9. Fortescue, E. B., C. I. Berul, F. Cecchin, E. P. Walsh, J. K. Triedman, and M. E. Alexander. Patient, procedural, and hardware factors associated with pacemaker lead failures in pediatrics and congenital heart disease. Heart Rhythm 1:150–159, 2004.

    Article  PubMed  Google Scholar 

  10. Friedman, R. A. Pacemakers in children: medical and surgical aspects. Tex. Heart Inst. J. 19:178–184, 1992.

    CAS  PubMed  Google Scholar 

  11. Furman, S. The future of the pacemaker. Pacing Clin. Electrophysiol. 25:1–2, 2002.

    Article  PubMed  Google Scholar 

  12. Hauser, R. G., D. L. Hayes, L. M. Kallinen, D. S. Cannom, A. E. Epstein, A. K. Almquist, S. L. Song, G. F. O. Tyers, S. C. Vlay, and M. Irwin. Clinical experience with pacemaker pulse generators and transvenous leads: an 8-year prospective multicenter study. Heart Rhythm 4:154–160, 2007.

    Article  PubMed  Google Scholar 

  13. Hill, T., and P. Lewicki. Statistics Methods and Applications. Tulsa, OK: StatSoft, 2007.

    Google Scholar 

  14. Holzbaur, K. R. S., W. M. Murray, G. E. Gold, and S. L. Delp. Upper limb muscle volumes in adult subjects. J. Biomech. 40:742–749, 2007.

    Article  PubMed  Google Scholar 

  15. Kenny, T. The Nuts and Bolts of Cardiac Pacing. Malden: Blackwell Futura, 162 pp, 2005.

    Book  Google Scholar 

  16. Kistler, P. M., N. Eizenberg, S. P. Fynn, and H. G. Mond. The subpectoral pacemaker implant: it isn’t what it seems. Pacing Clin. Electrophysiol. 27:361–364, 2004.

    Article  PubMed  Google Scholar 

  17. Kron, J., J. Herre, E. G. Renfroe, C. Rizo-Patron, M. Raitt, B. Halperin, M. Gold, B. Goldner, M. Wathen, B. Wilkoff, A. Olarte, and Q. Yao. Lead- and device-related complications in the antiarrhythmics versus implantable defibrillators trial. Am. Heart J. 141:92–98, 2001.

    Article  CAS  PubMed  Google Scholar 

  18. Maisel, W. H., M. Moynahan, B. D. Zuckerman, T. P. Gross, O. H. Tovar, D.-B. Tillman, and D. B. Schultz. Pacemaker and icd generator malfunctions: analysis of food and drug administration annual reports. J. Am. Med. Assoc. 295:1901–1906, 2006.

    Article  CAS  Google Scholar 

  19. Mattke, S., D. Muller, A. Markewitz, H. Kaulbach, M. Schmockel, U. Drwarth, E. Hoffmann, and G. Steinbeck. Failures of epicardial and transvenous leads for implantable cardioverter defibrillators. Am. Heart J. 130:1040–1044, 1995.

    Article  CAS  PubMed  Google Scholar 

  20. Pasquet, B., A. Carpentier, J. Duchateau, and K. Hainaut. Muscle fatigue during concentric and eccentric contractions. Muscle Nerve 23:1727–1735, 2000.

    Article  CAS  PubMed  Google Scholar 

  21. Powell, P. L., R. R. Roy, P. Kanim, M. A. Bello, and V. R. Edgerton. Predictability of skeletal muscle tension from architectural determinations in guinea pig hindlimbs. J. Appl. Physiol. 57:1715–1721, 1984.

    CAS  PubMed  Google Scholar 

  22. Shmulewitz, A., R. Langer, and J. Patton. Convergence in biomedical technology. Nat. Biotechnol. 24:277–280, 2006.

    PubMed  Google Scholar 

  23. Vining, G. G. Statistical Methods for Engineers. London: Brooks/Cole, 479 pp, 1998.

    Google Scholar 

  24. Voisin, J. L. Clavivle, a neglected bone: morphology and relation to arm movements and shoulder architecture in primates. Anat. Rec. 288A:944–953, 2006.

    Article  Google Scholar 

  25. Ward, S. R., and R. L. Lieber. Density and hydration of fresh and fixed human skeletal muscle. J. Biomech. 38:2317–2320, 2005.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Stephen Beningfield, Patronella Samuels, Sharon Heyne, and Nazlea Behardien-Peters of the Department of Radiology, University of Cape Town, for MRI and CT imaging.

Conflict of Interest Statement

The authors confirm that they do not have conflicts of interest in connection with the work and data are presented in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Franz.

Additional information

Associate Editor Eiji Tanaka oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Vaal, M.H., Neville, J., Scherman, J. et al. Mechanical Loadings on Pectoral Pacemaker Implants: Correlation of In-line and Transverse Force of the Pectoralis major . Ann Biomed Eng 38, 3338–3346 (2010). https://doi.org/10.1007/s10439-010-0085-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0085-4

Keywords

Navigation