Skip to main content
Log in

Phospholipid Polymer Biointerfaces for Lab-on-a-Chip Devices

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This review summarizes recent achievements and progress in the development of various functional 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer biointerfaces for lab-on-a-chip devices and applications. As phospholipid polymers, MPC polymers can form cell-membrane-like surfaces by surface chemistry and physics and thereby provide biointerfaces capable of suppressing protein adsorption and many subsequent biological responses. In order to enable application to microfluidic devices, a number of MPC polymers with diverse functions have been specially designed and synthesized by incorporating functional units such as charge and active ester for generating the microfluidic flow and conjugating biomolecules, respectively. Furthermore, these polymers were incorporated with silane or hydrophobic moiety to construct stable interfaces on various substrate materials such as glass, quartz, poly(methyl methacrylate), and poly(dimethylsiloxane), via a silane-coupling reaction or hydrophobic interactions. The basic interfacial properties of these interfaces have been characterized from multiple aspects of chemistry, physics, and biology, and the suppression of nonspecific bioadsorption and control of microfluidic flow have been successfully achieved using these biointerfaces on a chip. Further, many chip-based biomedical applications such as immunoassays and DNA separation have been accomplished by integrating these biointerfaces on a chip. Therefore, functional phospholipid polymer interfaces are promising and useful for application to lab-on-a-chip devices in biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9
FIGURE 10
FIGURE 11
FIGURE 12
FIGURE 13
FIGURE 14
FIGURE 15

Similar content being viewed by others

References

  1. Auroux, P. A., D. Iossifidis, D. R. Reyes, and A. Manz. Micro total analysis systems. 2. Analytical standard operations and applications. Anal. Chem. 74:2637–2652, 2002.

    Article  CAS  PubMed  Google Scholar 

  2. Beebe, D. J., J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo. Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590, 2000.

    Article  CAS  PubMed  Google Scholar 

  3. Belder, D., and M. Ludwig. Surface modification in microchip electrophoresis. Electrophoresis 24:3595–3606, 2003.

    Article  CAS  PubMed  Google Scholar 

  4. Bi, H., W. Zhong, S. Meng, J. Kong, P. Yang, and B. Liu. Construction of a biomimetic surface on microfluidic chips for biofouling resistance. Anal. Chem. 78:3399–3405, 2006.

    Article  CAS  PubMed  Google Scholar 

  5. Bousse, L., S. Mouradian, A. Minalla, H. Yee, K. Williams, and R. Dubrow. Protein sizing on a microchip. Anal. Chem. 73:1207–1212, 2001.

    Article  CAS  PubMed  Google Scholar 

  6. Burns, M. A., B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke. An integrated nanoliter DNA analysis device. Science 282:484–487, 1998.

    Article  CAS  PubMed  Google Scholar 

  7. Chapman, D. Biomembranes and new hemocompatible materials. Langmuir 9:39–45, 1993.

    Article  CAS  Google Scholar 

  8. Chen, Y., L. Y. Zhang, and G. Chen. Fabrication, modification, and application of department of analytical poly(methyl methacrylate) microfluidic chips. Electrophoresis 29:1801–1814, 2008.

    Article  CAS  PubMed  Google Scholar 

  9. Chu, M. X., H. Kudo, T. Shirai, K. Miyajima, H. Saito, N. Morimoto, K. Yano, Y. Iwasaki, K. Akiyoshi, and K. Mitsubayashi. A soft and flexible biosensor using a phospholipid polymer for continuous glucose monitoring. Biomed. Microdevices 11:837–842, 2009.

    Article  CAS  PubMed  Google Scholar 

  10. Doherty, E. A. S., R. J. Meagher, M. N. Albarghouthi, and A. E. Barron. Microchannel wall coatings for protein separations by capillary and chip electrophoresis. Electrophoresis 24:34–54, 2003.

    Article  PubMed  Google Scholar 

  11. Dolnik, V. Wall coating for capillary electrophoresis on microchips. Electrophoresis 25:3589–3601, 2004.

    Article  CAS  PubMed  Google Scholar 

  12. Durrani, A. A., J. A. Hayward, and D. Chapman. Biomembranes as models for polymer surfaces. 2. The syntheses of reactive species for covalent coupling of phosphorylcholine to polymer surfaces. Biomaterials 7:121–125, 1986.

    Article  CAS  PubMed  Google Scholar 

  13. El-Ali, J., P. K. Sorger, and K. F. Jensen. Cells on chips. Nature 442:403–411, 2006.

    Article  CAS  PubMed  Google Scholar 

  14. Erickson, D., D. Sinton, and D. Q. Li. A miniaturized high-voltage integrated power supply for portable microfluidic applications. Lab Chip 4:87–90, 2004.

    Article  CAS  PubMed  Google Scholar 

  15. Fiorini, G. S., and D. T. Chiu. Disposable microfluidic devices: fabrication, function, and application. Biotechniques 38:429–446, 2005.

    Article  CAS  PubMed  Google Scholar 

  16. Fukazawa, K., and K. Ishihara. Fabrication of a cell-adhesive protein imprinting surface with an artificial cell membrane structure for cell capturing. Biosens. Bioelectr. 25:609–614, 2009.

    Article  CAS  Google Scholar 

  17. Futamura, K., A. Matsumoto, T. Sakata, K. Ishihara, and Y. Miyahara. Phospholipid polymer-modified field effect transistor for sensitive detection of biomolecular recognition. In: 13th International Conference on Miniaturized Systems for Chemistry and Life Sciences, edited by T. S. Kim, Y. Lee, T. Chung, N. L. Jeon, S. Lee, K. Suh, J. Choo, and Y. Kim. San Diego: Chem. Biol. Microsys. Soc., 2009, pp. 1557–1559.

  18. Futterer, C., N. Minc, V. Bormuth, J. H. Codarbox, P. Laval, J. Rossier, and J. L. Viovy. Injection and flow control system for microchannels. Lab. Chip 4:351–356, 2004.

    Article  CAS  PubMed  Google Scholar 

  19. Gallardo, B. S., V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott. ELectrochemical principles for active control of liquids on submillimeter scales. Science 283:57–60, 1999.

    Article  CAS  PubMed  Google Scholar 

  20. Goda, T., T. Konno, M. Takai, T. Moro, and K. Ishihara. Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization. Biomaterials 27:5151–5160, 2006.

    Article  CAS  PubMed  Google Scholar 

  21. Goda, T., R. Matsuno, T. Konno, M. Takai, and K. Ishihara. Photografting of 2-methacryloyloxyethyl phosphorylcholine from polydimethylsiloxane: tunable protein repellency and lubrication property. Colloid Surf. B Biointerf. 63:64–72, 2008.

    Article  CAS  Google Scholar 

  22. Goto, M., T. Tsukahara, K. Sato, T. Konno, K. Ishihara, K. Sato, and T. Kitamori. Nanometer-scale patterned surfaces for control of cell adhesion. Analyt. Sci. 23:245–247, 2007.

    Article  CAS  Google Scholar 

  23. Griffith, L. G., and M. A. Swartz. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Molec. Cell Biol. 7:211–224, 2006.

    Article  CAS  Google Scholar 

  24. Hall, B., R. L. Bird, M. Kojima, and D. Chapman. Biomembranes as models for polymer surfaces. 5. Thromboelastographic studies of polymeric lipids and polyesters. Biomaterials 10:219–224, 1989.

    Article  CAS  PubMed  Google Scholar 

  25. Hamada, Y., T. Ono, T. Akagi, K. Ishihara, and T. Ichiki. Photochemical oxidation of poly(dimethylsiloxane) surface and subsequent coating with biomimetic phosphorylcholine polymer. J. Photopolym. Sci. Technol. 20:245–249, 2007.

    Article  CAS  Google Scholar 

  26. Harrison, D. J., K. Fluri, K. Seiler, Z. H. Fan, C. S. Effenhauser, and A. Manz. Micromachining a miniaturized capillary electrophoresis-based chemical-analysis system on a chip. Science 261:895–897, 1993.

    Article  CAS  PubMed  Google Scholar 

  27. Harrison, D. J., A. Manz, Z. H. Fan, H. Ludi, and H. M. Widmer. Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal. Chem. 64:1926–1932, 1992.

    Article  CAS  Google Scholar 

  28. Hasegawa, T., Y. Iwasaki, and K. Ishihara. Preparation and performance of protein-adsorption-resistant asymmetric porous membrane composed of polysulfone/phospholipid polymer blend. Biomaterials 22:243–251, 2001.

    Article  CAS  PubMed  Google Scholar 

  29. Hoshino, T., T. Konno, K. Ishihara, and K. Morishima. Live-cell-driven insertion of a nanoneedle. Jpn J. Appl. Phys. 48:107002, 2001.

    Article  CAS  Google Scholar 

  30. Hu, S. W., X. Q. Ren, M. Bachman, C. E. Sims, G. P. Li, and N. Allbritton. Surface modification of poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting. Anal. Chem. 74:4117–4123, 2002.

    Article  CAS  PubMed  Google Scholar 

  31. Hupfer, B., H. Ringsdorf, and H. Schupp. Polyreactions in oriented systems. 21. Polymeric phospholipid monolayers. Macromol. Chem. Phys.–Makromolekulare Chemie 182:247–253, 1981.

    CAS  Google Scholar 

  32. Il Kim, H., M. Takai, and K. Ishihara. Bioabsorbable material-containing phosphorylcholine group-rich surfaces for temporary scaffolding of the vessel wall. Tissue Eng. C Meth. 15:125–133, 2009.

    Article  CAS  Google Scholar 

  33. Ishihara, K., T. Tsuji, T. Kurosaki, and N. Nakabayashi. Hemocompatibility on graft-copolymers composed of poly(2-methacryloyloxyethyl phosphorylcholine) side-chain and poly(N-butyl methacrylate) backbone. J. Biomed. Mater. Res. 28:225–232, 1994.

    Article  CAS  PubMed  Google Scholar 

  34. Ishihara, K., T. Ueda, and N. Nakabayashi. Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym. J. 22:355–360, 1990.

    Article  CAS  Google Scholar 

  35. Iwasaki, Y., N. Nakabayashi, and K. Ishihara. Preservation of platelet function on 2-methacryloyloxyethyl phosphorylcholine-graft polymer as compared to various water-soluble graft polymers. J. Biomed. Mater. Res. 57:72–78, 2001.

    Article  CAS  PubMed  Google Scholar 

  36. Iwasaki, Y., A. Yamasaki, and K. Ishihara. Platelet compatible blood filtration fabrics using a phosphorylcholine polymer having high surface mobility. Biomaterials 24:3599–3604, 2003.

    Article  CAS  PubMed  Google Scholar 

  37. Jacobson, S. C., R. Hergenroder, L. B. Koutny, and J. M. Ramsey. High-speed separations on a microchip. Anal. Chem. 66:1114–1118, 1994.

    Article  CAS  Google Scholar 

  38. Jang, K., K. Sato, K. Mawatari, T. Konno, K. Ishihara, and T. Kitamori. Surface modification by 2-methacryloyloxyethyl phosphorylcholine coupled to a photolabile linker for cell micropatterning. Biomaterials 30:1413–1420, 2009.

    Article  CAS  PubMed  Google Scholar 

  39. Jiang, X. Y., J. M. K. Ng, A. D. Stroock, S. K. W. Dertinger, and G. M. Whitesides. A miniaturized, parallel, serially diluted immunoassay for analyzing multiple antigens. J. Am. Chem. Soc. 125:5294–5295, 2003.

    Article  CAS  PubMed  Google Scholar 

  40. Kadoma, Y., N. Nakabayashi, E. Masuhara, and J. Yamauchi. Synthesis and hemolysis test of polymer containing phosphorylcholine groups. Kobunshi Ronbunshu 35:423–427, 1978.

    CAS  Google Scholar 

  41. Kirby, B. J., A. R. Wheeler, R. N. Zare, J. A. Fruetel, and T. J. Shepodd. Programmable modification of cell adhesion and zeta potential in silica microchips. Lab Chip 3:5–10, 2003.

    Article  CAS  PubMed  Google Scholar 

  42. Kohlheyer, D., G. A. J. Besselink, R. G. H. Lammertink, S. Schlautmann, S. Unnikrishnan, and R. B. M. Schasfoort. Electro-osmotically controllable multi-flow microreactor. Microfluid. Nanofluid. 1:242–248, 2005.

    Article  CAS  Google Scholar 

  43. Kojima, M., K. Ishihara, A. Watanabe, and N. Nakabayashi. Interaction between phospholipids and biocompatible polymers containing a phosphorylcholine moiety. Biomaterials 12:121–124, 1991.

    Article  CAS  PubMed  Google Scholar 

  44. Konno, T., and K. Ishihara. Temporal and spatially controllable cell encapsulation using a water-soluble phospholipid polymer with phenylboronic acid moiety. Biomaterials 28:1770–1777, 2007.

    Article  CAS  PubMed  Google Scholar 

  45. Kopp, M. U., A. J. de Mello, and A. Manz. Chemical amplification: continuous-flow PCR on a chip. Science 280:1046–1048, 1998.

    Article  CAS  PubMed  Google Scholar 

  46. Kung, C. Y., M. D. Barnes, N. Lermer, W. B. Whitten, and J. M. Ramsey. Confinement and manipulation of individual molecules in attoliter volumes. Anal. Chem. 70:658–661, 1998.

    Article  CAS  Google Scholar 

  47. Kyomoto, M., T. Moro, Y. Iwasaki, F. Miyaji, H. Kawaguchi, Y. Takatori, K. Nakamura, and K. Ishihara. Superlubricious surface mimicking articular cartilage by grafting poly(2-methacryloyloxyethyl phosphorylcholine) on orthopaedic metal bearings. J. Biomed. Mater. Res. A 91A:730–741, 2009.

    Article  CAS  Google Scholar 

  48. Kyomoto, M., T. Moro, K. Saiga, F. Miyaji, H. Kawaguchi, Y. Takatori, K. Nakamura, and K. Ishihara. Lubricity and stability of poly(2-methacryloyloxyethyl phosphorylcholine) polymer layer on Co–Cr–Mo surface for hemi-arthroplasty to prevent degeneration of articular cartilage. Biomaterials 31:658–668, 2010.

    Article  CAS  PubMed  Google Scholar 

  49. Larsericsdotter, H., O. Jansson, A. Zhukov, D. Areskoug, S. Oscarsson, and J. Buijs. Optimizing the surface plasmon resonance/mass spectrometry interface for functional proteomics applications: how to avoid and utilize nonspecific adsorption. Proteomics 6:2355–2364, 2006.

    Article  CAS  PubMed  Google Scholar 

  50. Lewis, A. L. Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloid Surf. B Biointerf. 18:261–275, 2000.

    Article  CAS  Google Scholar 

  51. Lewis, A. L., J. Berwick, M. C. Davies, C. J. Roberts, J. H. Wang, S. Small, A. Dunn, V. O’Byrne, R. P. Redman, and S. A. Jones. Synthesis and characterisation of cationically modified phospholipid polymers. Biomaterials 25:3099–3108, 2004.

    Article  CAS  PubMed  Google Scholar 

  52. Liu, J. K., and M. L. Lee. Permanent surface modification of polymeric capillary electrophoresis microchips for protein and peptide analysis. Electrophoresis 27:3533–3546, 2006.

    Article  CAS  PubMed  Google Scholar 

  53. Liu, J. K., T. Pan, A. T. Woolley, and M. L. Lee. Surface-modified poly(methyl methacrylate) capillary electrophoresis microchips for protein and peptide analysis. Anal. Chem. 76:6948–6955, 2004.

    Article  CAS  PubMed  Google Scholar 

  54. Ma, Y. H., Y. Q. Tang, N. C. Billingham, S. P. Armes, and A. L. Lewis. Synthesis of biocompatible, stimuli-responsive, physical gels based on ABA triblock copolymers. Biomacromolecules 4:864–868, 2003.

    Article  CAS  PubMed  Google Scholar 

  55. MacDonald, M. P., G. C. Spalding, and K. Dholakia. Microfluidic sorting in an optical lattice. Nature 426:421–424, 2003.

    Article  CAS  PubMed  Google Scholar 

  56. Makamba, H., J. H. Kim, K. Lim, N. Park, and J. H. Hahn. Surface modification of poly(dimethylsiloxane) microchannels. Electrophoresis 24:3607–3619, 2003.

    Article  CAS  PubMed  Google Scholar 

  57. Manz, A., D. J. Harrison, E. M. J. Verpoorte, J. C. Fettinger, A. Paulus, H. Ludi, and H. M. Widmer. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems—capillary electrophoresis on a chip. J. Chromatogr. 593:253–258, 1992.

    Article  CAS  Google Scholar 

  58. Marra, K. G., T. M. Winger, S. R. Hanson, and E. L. Chaikof. Cytomimetic biomaterials. 1. In situ polymerization of phospholipids on an alkylated surface. Macromolecules 30:6483–6488, 1997.

    Article  CAS  Google Scholar 

  59. Matsuda, T., J. Nagase, A. Ghoda, Y. Hirano, S. Kidoaki, and Y. Nakayama. Phosphorylcholine-endcapped oligomer and block co-oligomer and surface biological reactivity. Biomaterials 24:4517–4527, 2003.

    Article  CAS  PubMed  Google Scholar 

  60. McClain, M. A., C. T. Culbertson, S. C. Jacobson, N. L. Allbritton, C. E. Sims, and J. M. Ramsey. Microfluidic devices for the high-throughput chemical analysis of cells. Anal. Chem. 75:5646–5655, 2003.

    Article  CAS  PubMed  Google Scholar 

  61. McDonald, J. C., D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller, and G. M. Whitesides. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40, 2000.

    Article  CAS  PubMed  Google Scholar 

  62. Metz, S., R. Holzer, and P. Renaud. Polyimide-based microfluidic devices. Lab Chip 1:29–34, 2001.

    Article  CAS  PubMed  Google Scholar 

  63. Moro, T., Y. Takatori, K. Ishihara, T. Konno, Y. Takigawa, T. Matsushita, U. I. Chung, K. Nakamura, and H. Kawaguchi. Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nat. Mater. 3:829–836, 2004.

    Article  CAS  PubMed  Google Scholar 

  64. Muck, A., and A. Svatos. Chemical modification of polymeric microchip devices. Talanta 74:333–341, 2007.

    CAS  PubMed  Google Scholar 

  65. Mukhopadhyay, R. When microfluidic devices go bad—how does fouling occur in microfluidic devices, and what can be done about it? Anal. Chem. 77:429–432, 2005.

    Google Scholar 

  66. Nakai, S., T. Nakaya, and M. Imoto. Polymeric phospholipid analog, 10. Synthesis and polymerization of 2-(methacryloyloxy)ethyl 2-aminoethyl hydrogen phosphate. Macromol. Chem. Phys.–Makromolekulare Chemie 178:2963–2967, 1977.

    CAS  Google Scholar 

  67. Nam, K., J. Watanabe, and K. Ishihara. Modeling of swelling and drug release behavior of spontaneously forming hydrogels composed of phospholipid polymers. Int. J. Pharm. 275:259–269, 2004.

    Article  CAS  PubMed  Google Scholar 

  68. Nishizawa, K., T. Konno, M. Takai, and K. Ishihara. Nanostructured phospholipid biointerface for immunoassay microchip integrated with plasma separation membrane. In: 11th International Conference on Miniaturized Systems for Chemistry and Life Sciences, edited by J. L. Viovy, P. Tabeling, S. Descroix, and L. Malaquin. San Diego: Chem. Biol. Microsys. Soc., 2007, pp. 1291–1293.

    Google Scholar 

  69. Nishizawa, K., T. Konno, M. Takai, and K. Ishihara. Nanostructured biointerface using phospholipid polymer for highly sensitive immunoassay. Trans. Mater. Res. Soc. Jpn 32:587–590, 2007.

    CAS  Google Scholar 

  70. Nishizawa, K., T. Konno, M. Takai, and K. Ishihara. Bioconjugated phospholipid polymer biointerface for enzyme-linked immunosorbent assay. Biomacromolecules 9:403–407, 2008.

    Article  CAS  PubMed  Google Scholar 

  71. Nishizawa, K., T. Konno, M. Takai, and K. Ishihara. Microchip immunoassay using high density bioconjugation on the phospholipid polymer interface. Trans. Mater. Res. Soc. Jpn 33:787–790, 2008.

    CAS  Google Scholar 

  72. Nishizawa, K., T. Konno, M. Takai, and K. Ishihara. Stabilization of bioconjugated phospholipid polymer nanometer scaled structures for highly-sensitive immunoassay. Trans. Mater. Res. Soc. Jpn 34:201–204, 2009.

    CAS  Google Scholar 

  73. Nishizawa, K., M. Takai, and K. Ishihara. Electrosprayed phospholipid polymer surface for enhanced sensitive ELISA chip. In: 10th International Conference on Miniaturized Systems for Chemistry and Life Sciences, edited by T. Kitamori, H. Fujita, and S. Hasebe. Tokyo: Soc. Chem. Micro-Nano Sys. (CHEMINAS), 2006, pp. 335–337.

  74. Obeid, P. J., T. K. Christopoulos, H. J. Crabtree, and C. J. Backhouse. Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection. Anal. Chem. 75:288–295, 2003.

    Article  CAS  PubMed  Google Scholar 

  75. Oki, A., S. Adachi, Y. Takamura, K. Ishihara, H. Ogawa, Y. Ito, T. Ichiki, and Y. Horiike. Electroosmosis injection of blood serum into biocompatible microcapillary chip fabricated on quartz plate. Electrophoresis 22:341–347, 2001.

    Article  CAS  PubMed  Google Scholar 

  76. Oki, A., M. Takai, H. Ogawa, Y. Takamura, T. Fukasawa, J. Kikuchi, Y. Ito, T. Ichiki, and Y. Horiike. Healthcare chip for checking health condition from analysis of trace blood collected by painless needle. Jpn J. Appl. Phys. 42:3722–3727, 2003.

    Article  CAS  Google Scholar 

  77. Ostuni, E., R. G. Chapman, M. N. Liang, G. Meluleni, G. Pier, D. E. Ingber, and G. M. Whitesides. Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells. Langmuir 17:6336–6343, 2001.

    Article  CAS  Google Scholar 

  78. Ottesen, E. A., J. W. Hong, S. R. Quake, and J. R. Leadbetter. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314:1464–1467, 2006.

    Article  CAS  PubMed  Google Scholar 

  79. Park, J. W., S. Kurosawa, H. Aizawa, Y. Goda, M. Takai, and K. Ishihara. Piezoelectric immunosensor for bisphenol A based on signal enhancing step with 2-methacrolyloxyethyl phosphorylcholine polymeric nanoparticle. Analyst 131:155–162, 2006.

    Article  CAS  PubMed  Google Scholar 

  80. Park, J., S. Kurosawa, M. Takai, and K. Ishihara. Antibody immobilization to phospholipid polymer layer on gold substrate of quartz crystal microbalance immunosensor. Colloid Surf. B Biointerf. 55:164–172, 2007.

    Article  CAS  Google Scholar 

  81. Popat, K. C., and T. A. Desai. Poly(ethylene glycol) interfaces: an approach for enhanced performance of microfluidic systems. Biosens. Bioelectr. 19:1037–1044, 2004.

    Article  CAS  Google Scholar 

  82. Prakash, M., and N. Gershenfeld. Microfluidic bubble logic. Science 315:832–835, 2007.

    Article  CAS  PubMed  Google Scholar 

  83. Reyes, D. R., D. Iossifidis, P. A. Auroux, and A. Manz. Micro total analysis systems. 1. Introduction, theory, and technology. Anal. Chem. 74:2623–2636, 2002.

    Article  CAS  PubMed  Google Scholar 

  84. Ringsdorf, H., and B. Schlarb. Preparation and characterization of unsymmetrical liposomes in a net. Macromol. Chem. Phys.–Makromolekulare Chemie 189:299–315, 1988.

    CAS  Google Scholar 

  85. Roach, L. S., H. Song, and R. F. Ismagilov. Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants. Anal. Chem. 77:785–796, 2005.

    Article  CAS  PubMed  Google Scholar 

  86. Rossier, J., F. Reymond, and P. E. Michel. Polymer microfluidic chips for electrochemical and biochemical analyses. Electrophoresis 23:858–867, 2002.

    Article  CAS  PubMed  Google Scholar 

  87. Sakai-Kato, K., M. Kato, K. Ishihara, and T. Toyo’oka. An enzyme-immobilization method for integration of biofunctions on a microchip using a water-soluble amphiphilic phospholipid polymer having a reacting group. Lab Chip 4:4–6, 2004.

    Article  CAS  PubMed  Google Scholar 

  88. Sawada, S. I., Y. Iwasaki, N. Nakabayashi, and K. Ishihara. Stress response of adherent cells on a polymer blend surface composed of a segmented polyurethane and MPC copolymers. J. Biomed. Mater. Res. A 79A:476–484, 2006.

    Article  CAS  Google Scholar 

  89. Seo, J. H., R. Matsuno, M. Takai, and K. Ishihara. Cell adhesion on phase-separated surface of block copolymer composed of poly(2-methacryloyloxyethyl phosphorylcholine) and poly(dimethylsiloxane). Biomaterials 30:5330–5340, 2009.

    Article  CAS  PubMed  Google Scholar 

  90. Seong, G. H., J. Heo, and R. M. Crooks. Measurement of enzyme kinetics using a continuous-flow microfluidic system. Anal. Chem. 75:3161–3167, 2003.

    Article  CAS  PubMed  Google Scholar 

  91. Shimada, T., M. Ueda, H. Jinno, N. Chiba, M. Wada, J. Watanabe, K. Ishihara, and Y. Kitagawa. Development of targeted therapy with paclitaxel incorporated into EGF-conjugated nanoparticles. Anticancer Res. 29:1009–1014, 2009.

    CAS  PubMed  Google Scholar 

  92. Shimizu, K., Y. Nagase, M. Takai, and K. Ishihara. Biofouling control by phospholipid polymer on microchannel DNA separation. Trans. Mater. Res. Soc. Jpn 31:1069–1072, 2006.

    CAS  Google Scholar 

  93. Sia, S. K., V. Linder, B. A. Parviz, A. Siegel, and G. M. Whitesides. An integrated approach to a portable and low-cost immunoassay for resource-poor settings. Angewandte Chemie 43:498–502, 2004.

    Article  CAS  PubMed  Google Scholar 

  94. Sibarani, J., T. Konno, M. Takai, and K. Ishihara. Surface modification by grafting with biocompatible 2-methacryloyloxyethyl phosphorylcholine for microfluidic devices. Key Eng. Mater. 342–343:789–792, 2007.

    Article  Google Scholar 

  95. Sibarani, J., M. Takai, and K. Ishihara. Surface modification on microfluidic devices with 2-methacryloyloxyethyl phosphorylcholine polymers for reducing unfavorable protein adsorption. Colloid Surf. B Biointerf. 54:88–93, 2007.

    Article  CAS  Google Scholar 

  96. Sibarani, J., M. Takai, and K. Ishihara. Dual function surface prepared on polymeric substrate for highly sensitve immunoassay-based microarray biosensors. In: 12th International Conference on Miniaturized Systems for Chemistry and Life Sciences, edited by L. E. Locascio, M. Gaitan, B. M. Paegel, D. J. Ross, and W. N. Vreeland. San Diego: Chem. Biol. Microsys. Soc., 2008, pp. 248–250.

  97. Singer, S. J., and G. L. Nicolson. Fluid mosaic model of structure of cell-membranes. Science 175:720–731, 1972.

    Article  CAS  PubMed  Google Scholar 

  98. Stachowiak, T. B., F. Svec, and J. M. J. Frechet. Patternable protein resistant surfaces for multifunctional microfluidic devices via surface hydrophilization of porous polymer monoliths using photografting. Chem. Mater. 18:5950–5957, 2006.

    Article  CAS  Google Scholar 

  99. Stroock, A. D., M. Weck, D. T. Chiu, W. T. S. Huck, P. J. A. Kenis, R. F. Ismagilov, and G. M. Whitesides. Patterning electro-osmotic flow with patterned surface charge. Phys. Rev. Lett. 84:3314–3317, 2000.

    Article  CAS  PubMed  Google Scholar 

  100. Szekely, L., and A. Guttman. New advances in microchip fabrication for electrochromatography. Electrophoresis 26:4590–4604, 2005.

    Article  CAS  PubMed  Google Scholar 

  101. Takai, M., H. Onoda, K. Ishihara, Y. Takamura, and Y. Horiike. Newly designed biocompatible polymers having phospholipid polar group for electro-osmosis pump actuated cell sorter chip. In: 8th International Conference on Miniaturized Systems for Chemistry and Life Sciences, edited by T. Laurell, J. Nilsson, K. Jensen, and D. J. Harrison. Cambridge: Royal Soc. Chem., 2004, pp. 115–117.

    Google Scholar 

  102. Takai, M., K. Shimizu, Y. Nagase, and K. Ishihara. DNA separation on nanochannel with phospholipid polymers. In: 10th International Conference on Miniaturized Systems for Chemistry and Life Sciences, edited by T. Kitamori, H. Fujita, and S. Hasebe. Tokyo: Soc. Chem. Micro-Nano Sys. (CHEMINAS), 2006, pp. 885–887.

    Google Scholar 

  103. Thorsen, T., S. J. Maerkl, and S. R. Quake. Microfluidic large-scale integration. Science 298:580–584, 2002.

    Article  CAS  PubMed  Google Scholar 

  104. Ueda, T., H. Oshida, K. Kurita, K. Ishihara, and N. Nakabayashi. Preparation of 2-methacryloyloxyethyl phosphorylcholine copolymers with alkyl methacrylates and their blood compatibility. Polym. J. 24:1259–1269, 1992.

    Article  CAS  Google Scholar 

  105. Watanabe, J., T. Eriguchi, and K. Ishihara. Cell adhesion and morphology in porous scaffold based on enantiomeric poly(lactic acid) graft-type phospholipid polymers. Biomacromolecules 3:1375–1383, 2002.

    Article  CAS  PubMed  Google Scholar 

  106. Whitesides, G. M. The origins and the future of microfluidics. Nature 442:368–373, 2006.

    Article  CAS  PubMed  Google Scholar 

  107. Wong, I., and C. M. Ho. Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid. Nanofluid. 7:291–306, 2009.

    Article  CAS  PubMed  Google Scholar 

  108. Wu, D. P., B. X. Zhao, Z. P. Dai, J. H. Qin, and B. C. Lin. Grafting epoxy-modified hydrophilic polymers onto poly(dimethylsiloxane) microfluidic chip to resist nonspecific protein adsorption. Lab Chip 6:942–947, 2006.

    Article  CAS  PubMed  Google Scholar 

  109. Xia, Y. N., and G. M. Whitesides. Soft lithography. Annu. Rev. Mater. Sci. 28:153–184, 1998.

    Article  CAS  Google Scholar 

  110. Xu, Y., K. Sato, K. Mawatari, T. Konno, K. Jang, K. Ishihara, and T. Kitamori. A microfluidic hydrogel capable of cell preservation without perfusion culture under cell-based assay conditions. Adv. Mater.. doi:10.1002/adma.201000006.

  111. Xu, Y., M. Takai, and K. Ishihara. Protein adsorption and cell adhesion on cationic, neutral, and anionic 2-methacryloyloxyethyl phosphorylcholine copolymer surfaces. Biomaterials 30:4930–4938, 2009.

    Article  CAS  PubMed  Google Scholar 

  112. Xu, Y., M. Takai, and K. Ishihara. Suppression of protein adsorption on a charged phospholipid polymer interface. Biomacromolecules 10:267–274, 2009.

    Article  CAS  PubMed  Google Scholar 

  113. Xu, Y., M. Takai, T. Konno, and K. Ishihara. Microfluidic flow control on charged phospholipid polymer interface. Lab Chip 7:199–206, 2007.

    Article  CAS  PubMed  Google Scholar 

  114. Yang, P. D., A. H. Rizvi, B. Messer, B. F. Chmelka, G. M. Whitesides, and G. D. Stucky. Patterning porous oxides within microchannel networks. Adv. Mater. 13:427–431, 2001.

    Article  Google Scholar 

  115. Ye, S. H., C. A. Johnson, J. R. Woolley, T. A. Snyder, L. J. Gamble, and W. R. Wagner. Covalent surface modification of a titanium alloy with a phosphorylcholine-containing copolymer for reduced thrombogenicity in cardiovascular devices. J. Biomed. Mater. Res. A 91A:18–28, 2009.

    Article  CAS  Google Scholar 

  116. Ye, S. H., J. Watanabe, M. Takai, Y. Iwasaki, and K. Ishihara. High functional hollow fiber membrane modified with phospholipid polymers for a liver assist bioreactor. Biomaterials 27:1955–1962, 2006.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas ‘‘Molecular Soft-Interface Science’’ from the Ministry of Education, Culture, Sports, Science and Technology of Japan. The authors thank Prof. Michael Detamore, The University of Kansas, for providing the opportunity to contribute this review paper in the special issue of this journal.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Xu or Madoka Takai.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Takai, M. & Ishihara, K. Phospholipid Polymer Biointerfaces for Lab-on-a-Chip Devices. Ann Biomed Eng 38, 1938–1953 (2010). https://doi.org/10.1007/s10439-010-0025-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0025-3

Keywords

Navigation