Skip to main content

Advertisement

Log in

Optimal Control of HIV-Virus Dynamics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this paper we consider a mathematical model of HIV-virus dynamics and propose an efficient control strategy to keep the number of HIV virons under a pre-specified level and to reduce the total amount of medications that patients receive. The model considered is a nonlinear third-order model. The third-order model describes dynamics of three most dominant variables: number of healthy white blood cells (T-cells), number of infected T-cells, and number of virus particles. There are two control variables in this model corresponding to two categories of antiviral drugs: reverse transcriptase inhibitors (RTI) and protease inhibitors (PI). The proposed strategy is based on linearization of the nonlinear model at the equilibrium point (steady state). The corresponding controller has two components: the first one that keeps the system state variables at the desired equilibrium (set-point controller) and the second-one that reduces in an optimal way deviations of the system state variables from their desired equilibrium values. The second controller is based on minimization of the square of the error between the actual and desired (equilibrium) values for the linearized system (linear-quadratic optimal controller). The obtained control strategy recommends to HIV researchers and experimentalists that the constant dosages of drugs have to be administrated at all times (set point controller, open-loop controller) and that the variable dosages of drugs have to be administrated on a daily basis (closed-loop controller, feedback controller).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Astrom, K., and M. Wittenmark. PID Controllers Theory, Design, and Tuning. Instrument Society of America, 1995.

  2. Banks, H., H. Kwon, J. Toivanen, and H. Tran. A state-dependent Riccati equation-based estimator approach for HIV feedback control. Optimal Control Applications and Method, 27, 93-121, 2006.

    Article  Google Scholar 

  3. Brandt, M. and G. Chen. Feedback control of a biodynamical model of HIV-1. IEEE Transactions on Biomedical Engineering, 48:754-759, 2001. doi:10.1109/10.930900.

    Article  PubMed  CAS  Google Scholar 

  4. Chen, T-C. Linear Systems and Design Oxford University Press, Oxford, United Kingdom, 1999.

    Google Scholar 

  5. Craig, I. and X. Xia. Can HIV/AIDS be controlled. IEEE Control Systems Magazine, 25:80-83, 2005. doi:10.1109/MCS.2005.1388805.

    Article  Google Scholar 

  6. Craig, I. X, Xia, and J. Venter. Introducing HIV/AIDS education into the electrical engineering curriculum at the university of Pretoria. IEEE Transactions on Education, 47:65-73, 2004. doi:10.1109/TE.2003.817620.

    Article  Google Scholar 

  7. Culshaw, R. Review of HIV models: The role of the natural immune response and implications for treatment. J. Biol. Syst., 12:123-135, 2004. doi:10.1142/S0218339004001099.

    Article  Google Scholar 

  8. de Souza, F. Modeling the Dynamics of HIV-1 and CD4 and CD8 lymphocytes. Engineering in Medicine and Biology, 18, 21-24, 1999.

    Article  CAS  Google Scholar 

  9. Friedland, B. Advanced Control System Design. Prentice Hall, Englewood Cliffs, 1996.

    Google Scholar 

  10. Ge, S. Z. Tian, and T. Lee. Nonlinear control of dynamic model of HIV-1. IEEE Transactions on Biomedical Engineering, 52:353-361, 2005. doi:10.1109/TBME.2004.840463.

    Article  PubMed  Google Scholar 

  11. Havlir, D. and D. Richman. Viral dynamics of HIV: Implications for drug development and therapeutic strategies. Annals of Internal Medicine, 124:984-994, 1996.

    PubMed  CAS  Google Scholar 

  12. Ho, D. D, A. U. Neumann, A. S. Perelson, W. Chen, J. M. Leonard, and M. Markowitz. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature, 373:123-126, 1995. doi:10.1038/373123a0.

    Article  PubMed  CAS  Google Scholar 

  13. Jeffrey, A. M., X. Xia, and K. Craig. When to initiate HIV therapy: a control theoretic approach. IEEE Transactions on Biomedical Engineering, 50:1213-1220, 2003. doi:10.1109/TBME.2003.818465.

    Article  PubMed  Google Scholar 

  14. Khalil, H. Nonlinear Systems. Prentice Hall, Englewood Cliffs, 2002.

    Google Scholar 

  15. Ko, J. W. Kim, and C. Chung. Optimized structural interpretation for HIV therapy and its performance analysis on controllability. IEEE Transactions on Biomedical Engineering, 53:380-386, 2006. doi:10.1109/TBME.2005.869651.

    Article  PubMed  Google Scholar 

  16. Kremling, A. and J. Saez-Rodriguez. Systems biology—An engineering perspective. Journal of Biotechnology, 129:329-351, 2007. doi:10.1016/j.jbiotec.2007.02.009.

    Article  PubMed  CAS  Google Scholar 

  17. Nowak, M. and R. May. Virus Dynamics: Mathematical Principles of Immunology and Virology. New York, Oxford Press, 2000.

    Google Scholar 

  18. Perelson, A. and P. Nelson. Mathematical analysis of HIV-I dynamics in vivo. SIAM Review, 41:3-44, 1999. doi:10.1137/S0036144598335107.

    Article  Google Scholar 

  19. Perelson, A. S., A. U. Neumann, M. Markowitz, J. M. Leonard, and D. D. Ho. HIV-1 dynamics in vivo: Virion clearance rate, infected cell lifespan and viral generation time. Science, 271: 582-1586, 1996. doi:10.1126/science.271.5255.1582.

    Article  Google Scholar 

  20. Sontag, E. D. New directions in control theory inspired by systems biology. Systems Biology, 1:9-18, 2004. doi:10.1049/sb:20045006.

    Article  CAS  Google Scholar 

  21. Sontag, E. D. Molecular system biology and control. European Journal of Control, 11:396-435, 2005. doi:10.3166/ejc.11.396-435.

    Article  Google Scholar 

  22. U.S. Department of Health and Human Services. Guidelines for the use of antiretroviral agents in HIV-infected adults and adolescents. Online http://www.aidsinfo.nih.gov/guidelines, 2003.

  23. Xia, X. Estimation of HIV/AIDS parameters. Automatica, 39: 1983-1988, 2003. doi:10.1016/S0005-1098(03)00220-6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verica Radisavljevic-Gajic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radisavljevic-Gajic, V. Optimal Control of HIV-Virus Dynamics. Ann Biomed Eng 37, 1251–1261 (2009). https://doi.org/10.1007/s10439-009-9672-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9672-7

Keywords

Navigation