Skip to main content
Log in

Passaged Goat Costal Chondrocytes Provide a Feasible Cell Source for Temporomandibular Joint Tissue Engineering

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Costal cartilage is commonly harvested for various types of facial reconstructive surgery. The ability of costal chondrocytes (CCs) to produce relevant extracellular matrix, including glycosaminoglycans (GAGs) and collagens, makes them an appealing cell source for fibrocartilage engineering. In order to obtain enough cells for tissue engineering, however, cell expansion will likely be necessary. This study examined CCs at passages 0, 1, 3, and 5, as well as temporomandibular (TMJ) disc cells, in a scaffoldless tissue engineering approach. It was hypothesized that earlier passage constructs would have more cartilaginous proteins and less fibrocartilaginous proteins. TMJ disc constructs had over twice the collagen content of any other group, as well as the largest tensile properties; however, the substantial contraction of the constructs and limited cell numbers make it a non-feasible cell source for tissue engineering. In general, statistical differences in mechanical properties or collagen content of the various CC groups were not observed; however, significantly more GAG was produced in the passaged CCs than the primary CCs. More collagen type II was also observed in some of the passaged groups. These results suggest not only feasibility but potential superiority of passaged CCs over primary CCs, which may lead to functional engineered fibrocartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Allen K. D., K. A. Athanasiou 2005 A surface-regional and freeze-thaw characterization of the porcine temporomandibular joint disc. Ann Biomed Eng. 33, 951–62. doi:10.1007/s10439-005-3872-6

    Article  PubMed  Google Scholar 

  2. Allen K. D., K. A. Athanasiou 2007 Effect of passage and topography on gene expression of temporomandibular joint disc cells. Tissue Eng. 13, 101–10. doi:10.1089/ten.2006.0094

    Article  PubMed  CAS  Google Scholar 

  3. Amiel D., R. D. Coutts, F. L. Harwood, K. K. Ishizue, J. B. Kleiner 1988 The chondrogenesis of rib perichondrial grafts for repair of full thickness articular cartilage defects in a rabbit model: a one year postoperative assessment. Connect Tissue Res. 18, 27–39. doi:10.3109/03008208809019070

    Article  PubMed  CAS  Google Scholar 

  4. Athanasiou K. A., A. Agarwal, F. J. Dzida 1994 Comparative study of the intrinsic mechanical properties of the human acetabular and femoral head cartilage. J Orthop Res. 12, 340–9. doi:10.1002/jor.1100120306

    Article  PubMed  CAS  Google Scholar 

  5. Baek R. M., Y. T. Song 2006 Overgrowth of a costochondral graft in reconstruction of the temporomandibular joint. Scand J Plast Reconstr Surg Hand Surg. 40, 179–85. doi:10.1080/02844310600763725

    Article  PubMed  Google Scholar 

  6. Beatty M. W., M. J. Bruno, L. R. Iwasaki, J. C. Nickel 2001 Strain rate dependent orthotropic properties of pristine and impulsively loaded porcine temporomandibular joint disk. J Biomed Mater Res. 57, 25–34. doi:10.1002/1097-4636(200110)57:1<25::AID-JBM1137>3.0.CO;2-H

    Article  PubMed  CAS  Google Scholar 

  7. Brent B. 1999 Technical advances in ear reconstruction with autogenous rib cartilage grafts: personal experience with 1200 cases. Plast Reconstr Surg. 104, 319–34; discussion 335–8

    Article  PubMed  CAS  Google Scholar 

  8. Caccamese J. F. Jr., R. L. Ruiz, B. J. Costello 2005 Costochondral rib grafting. Atlas Oral Maxillofac Surg Clin North Am. 13, 139–49. doi:10.1016/j.cxom.2005.05.004

    Article  PubMed  Google Scholar 

  9. Darling E. M., K. A. Athanasiou 2005 Growth factor impact on articular cartilage subpopulations. Cell Tissue Res. 322, 463–73. doi:10.1007/s00441-005-0020-4

    Article  PubMed  CAS  Google Scholar 

  10. Darling E. M., K. A. Athanasiou 2005 Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J Orthop Res. 23, 425–32. doi:10.1016/j.orthres.2004.08.008

    Article  PubMed  CAS  Google Scholar 

  11. Detamore M. S., J. G. Orfanos, A. J. Almarza, M. M. French, M. E. Wong, K. A. Athanasiou 2005 Quantitative analysis and comparative regional investigation of the extracellular matrix of the porcine temporomandibular joint disc. Matrix Biol. 24, 45–57

    PubMed  CAS  Google Scholar 

  12. Dimitroulis G. 2005 The role of surgery in the management of disorders of the temporomandibular joint: a critical review of the literature. Part 2. Int J Oral Maxillofac Surg. 34, 231–7

    PubMed  CAS  Google Scholar 

  13. Fernandes R., T. Fattahi, B. Steinberg 2006 Costochondral rib grafts in mandibular reconstruction. Atlas Oral Maxillofac Surg Clin North Am. 14, 179–83. doi:10.1016/j.cxom.2006.05.007

    Article  PubMed  Google Scholar 

  14. Figueroa A. A., B. J. Gans, S. Pruzansky 1984 Long-term follow-up of a mandibular costochondral graft. Oral Surg Oral Med Oral Pathol. 58, 257–68. doi:10.1016/0030-4220(84)90050-1

    Article  PubMed  CAS  Google Scholar 

  15. Freed L. E., J. C. Marquis, A. Nohria, J. Emmanual, A. G. Mikos, R. Langer 1993 Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res. 27, 11–23. doi:10.1002/jbm.820270104

    Article  PubMed  CAS  Google Scholar 

  16. Gage J. P., R. M. Shaw, F. B. Moloney 1995 Collagen type in dysfunctional temporomandibular joint disks. J Prosthet Dent. 74, 517–20. doi:10.1016/S0022-3913(05)80355-5

    Article  PubMed  CAS  Google Scholar 

  17. Goldring M. B., J. Birkhead, L. J. Sandell, T. Kimura, S. M. Krane 1988 Interleukin 1 suppresses expression of cartilage-specific types II and IX collagens and increases types I and III collagens in human chondrocytes. J Clin Invest. 82, 2026–37. doi:10.1172/JCI113823

    Article  PubMed  CAS  Google Scholar 

  18. Hoben G. M., J. C. Hu, R. A. James, K. A. Athanasiou 2007 Self-assembly of fibrochondrocytes and chondrocytes for tissue engineering of the knee meniscus. Tissue Eng. 13, 939–46. doi:10.1089/ten.2006.0116

    Article  PubMed  CAS  Google Scholar 

  19. Hu J. C., K. A. Athanasiou 2006 A self-assembling process in articular cartilage tissue engineering. Tissue Eng. 12, 969–79. doi:10.1089/ten.2006.12.969

    Article  PubMed  CAS  Google Scholar 

  20. Isogai N., H. Kusuhara, Y. Ikada, H. Ohtani, R. Jacquet, J. Hillyer, E. Lowder, W. J. Landis 2006 Comparison of different chondrocytes for use in tissue engineering of cartilage model structures. Tissue Eng. 12, 691–703. doi:10.1089/ten.2006.12.691

    Article  PubMed  CAS  Google Scholar 

  21. Jikko A., H. Murakami, W. Yan, K. Nakashima, Y. Ohya, H. Satakeda, M. Noshiro, T. Kawamoto, S. Nakamura, Y. Okada, F. Suzuki, Y. Kato 1996 Effects of cyclic adenosine 3’,5’-monophosphate on chondrocyte terminal differentiation and cartilage-matrix calcification. Endocrinology. 137, 122–8. doi:10.1210/en.137.1.122

    Article  PubMed  CAS  Google Scholar 

  22. Johns D. E., K. A. Athanasiou 2007 Improving culture conditions for temporomandibular joint disc tissue engineering. Cells Tissues Organs. 185, 246–57. doi:10.1159/000102173

    Article  PubMed  CAS  Google Scholar 

  23. Johns D. E., K. A. Athanasiou 2008 Engineering the TMJ disc with clinically-relevant cell sources. J Dent Res. 87, 548–552

    Article  PubMed  CAS  Google Scholar 

  24. Johnson T. S., J. W. Xu, V. V. Zaporojan, J. M. Mesa, C. Weinand, M. A. Randolph, L. J. Bonassar, J. M. Winograd, M. J. Yaremchuk 2004 Integrative repair of cartilage with articular and nonarticular chondrocytes. Tissue Eng. 10, 1308–15

    PubMed  CAS  Google Scholar 

  25. Kim Y. J., R. L. Sah, J. Y. Doong, A. J. Grodzinsky 1988 Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem. 174, 168–76. doi:10.1016/0003-2697(88)90532-5

    Article  PubMed  CAS  Google Scholar 

  26. Leipzig N. D., K. A. Athanasiou 2005 Unconfined creep compression of chondrocytes. J Biomech. 38, 77–85

    PubMed  Google Scholar 

  27. Lindqvist C., J. Jokinen, P. Paukku, A. Tasanen 1988 Adaptation of autogenous costochondral grafts used for temporomandibular joint reconstruction: a long-term clinical and radiologic follow-up. J Oral Maxillofac Surg. 46, 465–70. doi:10.1016/0278-2391(88)90413-2

    Article  PubMed  CAS  Google Scholar 

  28. Lu Y., S. Dhanaraj, Z. Wang, D. M. Bradley, S. M. Bowman, B. J. Cole, F. Binette 2006 Minced cartilage without cell culture serves as an effective intraoperative cell source for cartilage repair. J Orthop Res. 24, 1261–70. doi:10.1002/jor.20135

    Article  PubMed  Google Scholar 

  29. NIDCR, TMJ Disorders, 2006.

  30. Obeid G., S. A. Guttenberg, P. W. Connole 1988 Costochondral grafting in condylar replacement and mandibular reconstruction. J Oral Maxillofac Surg. 46, 177–82. doi:10.1016/0278-2391(88)90079-1

    Article  PubMed  CAS  Google Scholar 

  31. Ochi M., Y. Uchio, K. Kawasaki, S. Wakitani, J. Iwasa 2002 Transplantation of cartilage-like tissue made by tissue engineering in the treatment of cartilage defects of the knee. J Bone Joint Surg Br. 84, 571–8. doi:10.1302/0301-620X.84B4.11947

    Article  PubMed  CAS  Google Scholar 

  32. Perrott D. H., H. Umeda, L. B. Kaban 1994 Costochondral graft construction/reconstruction of the ramus/condyle unit: long-term follow-up. Int J Oral Maxillofac Surg. 23, 321–8. doi:10.1016/S0901-5027(05)80046-3

    Article  PubMed  CAS  Google Scholar 

  33. Pietila K., T. Kantomaa, P. Pirttiniemi, A. Poikela 1999 Comparison of amounts and properties of collagen and proteoglycans in condylar, costal and nasal cartilages. Cells Tissues Organs. 164, 30–6. doi:10.1159/000016640

    Article  PubMed  CAS  Google Scholar 

  34. Popko J., P. Szeparowicz, B. Sawicki, S. Wolczynski, J. Wojnar 2003 Rabbit articular cartilage defects treated with cultured costal chondrocytes (preliminary report). Folia Morphol (Warsz). 62, 107–12

    Google Scholar 

  35. Ross R. B. 1999 Costochondral grafts replacing the mandibular condyle. Cleft Palate Craniofac J. 36, 334–9. doi:10.1597/1545-1569(1999)036<0334:CGRTMC>2.3.CO;2

    Article  PubMed  CAS  Google Scholar 

  36. Saadeh P. B., B. Brent, B. J. Mehrara, D. S. Steinbrech, V. Ting, G. K. Gittes, M. T. Longaker 1999 Human cartilage engineering: chondrocyte extraction, proliferation, and characterization for construct development. Ann Plast Surg. 42, 509–13. doi:10.1097/00000637-199905000-00008

    Article  PubMed  CAS  Google Scholar 

  37. Samman N., L. K. Cheung, H. Tideman 1995 Overgrowth of a costochondral graft in an adult male. Int J Oral Maxillofac Surg. 24, 333–5. doi:10.1016/S0901-5027(05)80484-9

    Article  PubMed  CAS  Google Scholar 

  38. Samman N., L. K. Cheung, H. Tideman 1996 Variations in costochondral grafting of the mandibular ramus. Ann R Australas Coll Dent Surg. 13, 144–53

    PubMed  CAS  Google Scholar 

  39. Sindelar B. J., S. P. Evanko, T. Alonzo, S. W. Herring, T. Wight 2000 Effects of intraoral splint wear on proteoglycans in the temporomandibular joint disc. Arch Biochem Biophys. 379, 64–70. doi:10.1006/abbi.2000.1855

    Article  PubMed  CAS  Google Scholar 

  40. Steinberg M. S., M. Takeichi 1994 Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression. Proc Natl Acad Sci U S A. 91, 206–9. doi:10.1073/pnas.91.1.206

    Article  PubMed  CAS  Google Scholar 

  41. Stockwell R. A. 1967 The cell density of human articular and costal cartilage. J Anat. 101, 753–63

    PubMed  CAS  Google Scholar 

  42. Szeparowicz P., J. Popko, B. Sawicki, S. Wolczynski, M. Bierc 2004 Comparison of cartilage self repairs and repairs with costal and articular chondrocyte transplantation in treatment of cartilage defects in rats. Rocz Akad Med Bialymst. 49(Suppl 1), 28–30

    PubMed  Google Scholar 

  43. Tay A. G., J. Farhadi, R. Suetterlin, G. Pierer, M. Heberer, I. Martin 2004 Cell yield, proliferation, and postexpansion differentiation capacity of human ear, nasal, and rib chondrocytes. Tissue Eng. 10, 762–70. doi:10.1089/1076327041348572

    Article  PubMed  Google Scholar 

  44. Ting V., C. D. Sims, L. E. Brecht, J. G. McCarthy, A. K. Kasabian, P. R. Connelly, J. Elisseeff, G. K. Gittes, M. T. Longaker 1998 In vitro prefabrication of human cartilage shapes using fibrin glue and human chondrocytes. Ann Plast Surg. 40, 413–20; discussion 420–1

    Article  PubMed  CAS  Google Scholar 

  45. Trumpy I. G., T. Lyberg 1993 In vivo deterioration of proplast-teflon temporomandibular joint interpositional implants: a scanning electron microscopic and energy-dispersive X-ray analysis. J Oral Maxillofac Surg. 51, 624–9

    Article  PubMed  CAS  Google Scholar 

  46. Trumpy I. G., T. Lyberg 1995 Surgical treatment of internal derangement of the temporomandibular joint: long-term evaluation of three techniques. J Oral Maxillofac Surg. 53, 740–6; discussion 746–7

    Article  PubMed  CAS  Google Scholar 

  47. Trumpy I. G., B. Roald, T. Lyberg 1996 Morphologic and immunohistochemical observation of explanted Proplast-Teflon temporomandibular joint interpositional implants. J Oral Maxillofac Surg. 54, 63–8; discussion 68–70

    Article  PubMed  CAS  Google Scholar 

  48. Walles T., B. Giere, P. Macchiarini, H. Mertsching 2004 Expansion of chondrocytes in a three-dimensional matrix for tracheal tissue engineering. Ann Thorac Surg. 78, 444–8; discussion 448–449

    Article  PubMed  Google Scholar 

  49. Ware W. H., S. L. Brown 1981 Growth centre transplantation to replace mandibular condyles. J Maxillofac Surg. 9, 50–8. doi:10.1016/S0301-0503(81)80012-4

    Article  PubMed  CAS  Google Scholar 

  50. Woessner J. F. 1961 The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys. 93, 440–7. doi:10.1016/0003-9861(61)90291-0

    Article  PubMed  CAS  Google Scholar 

  51. Wong, M. E., K. D. Allen, and K. A. Athanasiou. Tissue engineering of the temporomandibular joint. In: Biomedical Engineering Handbook Third Edition: Tissue Engineering and Artificial Organs, edited by J. D. Bronzino. CRC Press, 2006, pp. 51-1–52-22.

  52. Xu J. W., V. Zaporojan, G. M. Peretti, R. E. Roses, K. B. Morse, A. K. Roy, J. M. Mesa, M. A. Randolph, L. J. Bonassar, M. J. Yaremchuk 2004 Injectable tissue-engineered cartilage with different chondrocyte sources. Plast Reconstr Surg. 113, 1361–71. doi:10.1097/01.PRS.0000111594.52661.29

    Article  PubMed  Google Scholar 

  53. Yotsuyanagi T., M. Mikami, M. Yamauchi, Y. Higuma, S. Urushidate, K. Ezoe 2006 A new technique for harvesting costal cartilage with minimum sacrifice at the donor site. J Plast Reconstr Aesthet Surg. 59, 352–9. doi:10.1016/j.bjps.2005.04.049

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge funding from NIDCR #R01DE015038-01A2 and NIAMS #R01AR47839-2 grants and Drs. Jerry Hu and Gwen Hoben for their help in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyriacos A. Athanasiou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, D.E.J., Athanasiou, K.A. Passaged Goat Costal Chondrocytes Provide a Feasible Cell Source for Temporomandibular Joint Tissue Engineering. Ann Biomed Eng 36, 1992–2001 (2008). https://doi.org/10.1007/s10439-008-9572-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9572-2

Keywords

Navigation