Skip to main content

Advertisement

Log in

Study on Tumor Microvasculature Damage Induced by Alternate Cooling and Heating

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Tumor vasculature damage induced by various thermal treatments has been studied in vivo via laser confocal microscopy. Murine mammary carcinoma 4T1 was implanted in the nude mice dorsal skin fold window chamber. The implanted tumor was treated by alternate cooling and heating. Results showed that the treatment was much more effective as compared with that of cooling or heating alone, especially in damaging the tumor vasculature. In general, tumor vascular response to thermal stimuli was heterogeneous. All the treatments of hyperthermia at 42 °C (for 1 h), alternate cooling at 1 °C and heating at 42 °C (for 1/2 h each) and that of −10 °C/42 °C (for 1/2 h each) enhanced liposome extravasation. Pre-cooling tumor at 1 °C preserved most of the vascular integrity but partially inhibited the effect of post-hyperthermia at 42 °C. On the other hand, cooling at −10 °C for 1/2 h before heating at 42 °C caused severe vessel damage. Histo-pathological analyses further confirmed the effect as rare tumor vessel recurrence and large necrotic tumor tissue areas shown on the 7th day after the treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. New Breast Cancer Therapy at Duke Comprehensive Cancer Center Boosts Drugs’ Effects, Dramatically Shrinks Tumors. Duke University Health System. Accessed on 18 May 2002. URL: http://www.dukemednews.org/news/article.php?id=5510

  2. Boehm T., J. Folkman, T. Browder, M. S. O’Reilly. (1997). Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390:404–407

    Article  PubMed  CAS  Google Scholar 

  3. Bourne M. H., M. W. Piepkorn, F. Clayton, L. G. Leonard. (1986). Analysis of microvascular changes in frostbite injury. J. Surg. Res. 40: 26–35

    Article  PubMed  CAS  Google Scholar 

  4. Bowers W. D. Jr., R. W. Hubbard, R. C. Daum, P. Ashbaugh, E. Nilson (1973) Ultrastructural studies of muscle cells and vascular endothelium immediately after freeze-thaw injury. Cryobiology 10: 9–21

    Article  PubMed  Google Scholar 

  5. Brown S. L., J. W. Hunt, R. P. Hill (1992). Differential thermal sensitivity of tumour and normal tissue microvascular response during hyperthermia. Int. J. Hyperthermia 8: 501–514

    Article  PubMed  CAS  Google Scholar 

  6. Chen B. G., M. J. Zhou, L. X. Xu. (2005). Study of vascular endothelial cell morphology during hyperthermia. J. Therm. Biol. 30: 111–117

    Article  Google Scholar 

  7. Cohen J. K., R. J. Miller. (1994). Thermal protection of urethra during cryosurgery of prostate. Cryobiology 31: 313–316

    Article  PubMed  CAS  Google Scholar 

  8. Cohen J. K., R. J. Miller, B. A. Shuman. (1995). Urethral warming catheter for use during cryoablation of the prostate. Urology 45: 861–864

    Article  PubMed  CAS  Google Scholar 

  9. Dang L. H., C. Bettegowda, N. Agrawal, I. Cheong, D. Huso, P. Frost, F. Loganzo, L. Greenberger, J. Barkoczy, G. R. Pettit, A. B. Smith III, H. Gurulingappa, S. Khan, G. Parmigiani, K. W. Kinzler, S. Zhou, B. Vogelstein. (2004). Targeting vascular and avascular compartments of tumors with C. novyi-NT and anti-microtubule agents. Cancer Biol. Ther. 3: 326–337

    PubMed  CAS  Google Scholar 

  10. Davidson S. R., M. D. Sherar. (2003). Theoretical modelling, experimental studies and clinical simulations of urethral cooling catheters for use during prostate thermal therapy. Phys. Med. Biol. 48: 729–744

    Article  PubMed  Google Scholar 

  11. Denekamp J (1999). The tumour microcirculation as a target in cancer therapy: a clearer perspective. Eur. J. Clin. Invest. 29: 733–736

    Article  PubMed  CAS  Google Scholar 

  12. Eddy H. A. (1980). Alterations in tumor microvasculature during hyperthermia. Radiology 137: 515–521

    PubMed  CAS  Google Scholar 

  13. Emami B., G. H. Nussbaum, N. Hahn, A. J. Piro, A. Dritschilo, F. Quimby. (1981). Histopathological study on the effects of hyperthermia on microvasculature. Int. J. Radiat. Oncol. Biol. Phys. 7: 343–348

    PubMed  CAS  Google Scholar 

  14. Endrich B., P. Vaupel (2000) The role of the microcirculation in the treatment of malignant tumors: facts and fiction. In: M. Molls, Vaupel P. (eds) Blood Perfusion and Microenvironment of Human Tumors: Implications for Clinical Radiooncology. New York: Springer Verlag, pp. 19–39

    Google Scholar 

  15. Fajardo L. F., S. D. Prionas (1994) Endothelial cells and hyperthermia. Int. J. Hyperthermia 10: 347–353

    Article  PubMed  CAS  Google Scholar 

  16. Folkman J. (1985). Tumor angiogenesis. Adv. Cancer Res. 43: 175–203

    Article  PubMed  CAS  Google Scholar 

  17. Gage A. A., J. Baust. (1998). Mechanisms of tissue injury in cryosurgery. Cryobiology 37: 171–186

    Article  PubMed  CAS  Google Scholar 

  18. Hashizume H., P. Baluk, S. Morikawa, J. W. McLean, G. Thurston, S. Roberge, R. K. Jain, D. M. McDonald. (2000). Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol. 156: 1363–1380

    PubMed  CAS  Google Scholar 

  19. He X., J. C. Bischof. (2003). Quantification of temperature and injury response in thermal therapy and cryosurgery. Crit. Rev. Biomed. Eng. 31: 355–422

    Article  PubMed  Google Scholar 

  20. He X., J. C. Bischof. (2005). Analysis of thermal stress in cryosurgery of kidneys. J. Biomech. Eng. 127: 656–661

    Article  PubMed  Google Scholar 

  21. Hoffmann N. E., J. C. Bischof. (2001). Cryosurgery of normal and tumor tissue in the dorsal skin flap chamber: Part II – injury response. J. Biomech. Eng. 123: 310–316

    Article  PubMed  CAS  Google Scholar 

  22. Hoffmann N. E., J. C. Bischof (2002). The cryobiology of cryosurgical injury. Urology 60: 40–49

    Article  PubMed  Google Scholar 

  23. Hoffmann N. E., B. H. Chao, and J. C. Bischof. Cryo, hyper or both? Investigating combination cryo/hyperthermia in the dorsal skin flap chamber. Adv. Heat Mass Transfer Biotechnol. ASME HTD-Vol. 368/BED-Vol. 47:157–159, 2000

  24. Hope M. J., M. B. Bally, G. Webb, P. R. Cullis (1985). Production of large unilamellar vesicles by a rapid extrusion procedure: characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochem. Biophys. Acta 812: 55–65

    Article  CAS  Google Scholar 

  25. Huang Q., S. Shan, R. D. Braun, J. Lanzen, G. Anyrhambatla, G. Kong, M. Borelli, P. Corry, M. W. Dewhirst, C. Y. Li. (1999). Noninvasive visualization of tumors in rodent dorsal skin window chambers. Nat. Biotechnol. 17: 1033–1035

    Article  PubMed  CAS  Google Scholar 

  26. Hunt C. J., Y. C. Song, E. A. Bateson, D. E. Pegg. (1994). Fractures in cryopreserved arteries. Cryobiology 31: 506–515

    Article  PubMed  CAS  Google Scholar 

  27. Jain R. K. (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7:987–989

    Article  PubMed  CAS  Google Scholar 

  28. Konerding M. A., C. Van Ackern, E. Fait, F. Steinberg, C. Streffer (2000) Morphological aspects of tumor angiogenesis and microcirculation. In: M. Molls, Vaupel P. (eds) Blood Perfusion and Microenvironment of Human Tumors: Implications for Clinical Radiooncology. New York: Springer Verlag, pp. 5–17

    Google Scholar 

  29. Kong G., R. D. Braun, M. W. Dewhirst (2000) Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res. 60: 4440–4445

    PubMed  CAS  Google Scholar 

  30. Kong G., R. D. Braun, M. W. Dewhirst (2001) Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res. 61: 3027–3032

    PubMed  CAS  Google Scholar 

  31. Kuz’menko A. P., I. N. Todor, V. S. Mosienko (1990). The effect of the combined use of cryosurgery and hyperthermia on an experimental tumor process. Eksp. Onkol. 12: 60–61

    PubMed  CAS  Google Scholar 

  32. Lin P. S., K. C. Ho, S. J. Sung, J. Gladding (1992). Effect of tumour necrosis factor, heat, and radiation on the viability and microfilament organization in cultured endothelial cells. Int. J. Hyperthermia 8: 667–677

    Article  PubMed  CAS  Google Scholar 

  33. Liu J., Y. X. Zhou, T. H. Yu, L. Gui, Z. S. Deng, Y. G. Lv. (2004). Minimally invasive probe system capable of performing both cryosurgery and hyperthermia treatment on target tumor in deep tissues. Min. Invas. Ther. & Allied. Technol. 13: 47–57

    Article  Google Scholar 

  34. Liu P., A. Zhang, Y. Xu, L. X. Xu. (2005). Study of non-uniform nanoparticle liposome extravasation in tumour. Int. J. Hyperthermia 21: 259–270

    Article  PubMed  CAS  Google Scholar 

  35. Liu P., A. Zhang, M. Zhou, Y. Xu, L. X. Xu. (2004). Real time 3D detection of nanoparticle liposomes extravasation using laser confocal microscopy. Conf. Proc. IEEE Eng. Med. Biol. Soc. 4: 2662–2665

    PubMed  Google Scholar 

  36. Lovelock J. E. (1953). The haemolysis of human red blood-cells by freezing and thawing. Biochim. Biophys. Acta 10: 414–426

    Article  PubMed  CAS  Google Scholar 

  37. Manson P. N., R. Jesudass, L. Marzella, G. B. Bulkley, M. J. Im, K. K. Narayan (1991). Evidence for an early free radical-mediated reperfusion injury in frostbite. Free Radic. Biol. Med. 10: 7–11

    Article  PubMed  CAS  Google Scholar 

  38. Nah B. S., I. B. Choi, W. Y. Oh, J. L. Osborn, C. W. Song. (1996). Vascular thermal adaptation in tumors and normal tissue in rats. Int. J. Radiat. Oncol. Biol. Phys. 35: 95–101

    Article  PubMed  CAS  Google Scholar 

  39. Ohguri T., H. Imada, K. Yahara, S. Kakeda, A. Tomimatsu, F. Kato, S. Nomoto, H. Terashima, Y. Korogi. (2004). Effect of 8-MHz radiofrequency-capacitive regional hyperthermia with strong superficial cooling for unresectable or recurrent colorectal cancer. Int. J. Hyperthermia 20: 465–475

    Article  PubMed  CAS  Google Scholar 

  40. Osinsky S. P., A. B. Rikberg, L. N. Bubnovskaja, V. A. Trushina (1993). Tumour pH drop after cryotreatment and enhancement of hyperthermia antitumour effect. Int. J. Hyperthermia 9: 297–301

    Article  PubMed  CAS  Google Scholar 

  41. Pegg D. E., M. C. Wusteman, S. Boylan. (1997). Fractures in cryopreserved elastic arteries. Cryobiology 34: 183–192

    Article  PubMed  CAS  Google Scholar 

  42. Rabin Y., P. S. Steif. (1996). Analysis of thermal stresses around a cryosurgical probe. Cryobiology 33: 276–290

    Article  PubMed  Google Scholar 

  43. Rabin Y., P. S. Steif. (2000). Thermal stress modeling in cryosurgery. Int. J. Solids Struct. 37: 2363–2375

    Article  Google Scholar 

  44. Reinhold H. S., B. Endrich. (1986). Tumour microcirculation as a target for hyperthermia. Int. J. Hypertheria 2: 111–137

    Article  CAS  Google Scholar 

  45. Rubinsky B. (2000). Cryosurgery. Annu. Rev. Biomed. Eng. 2: 157–187

    Article  PubMed  CAS  Google Scholar 

  46. Rui J., K. N. Tatsutani, R. Dahiya, B. Rubinsky. (1999). Effect of thermal variables on human breast cancer in cryosurgery. Breast Cancer Res. Treat. 53: 185–192

    Article  PubMed  CAS  Google Scholar 

  47. Seifert J. K., D. L. Morris. (1999). Indicators of recurrence following cryotherapy for hepatic metastases from colorectal cancer. Br. J. Surg. 86: 234–240

    Article  PubMed  CAS  Google Scholar 

  48. Theodorescu D. (2004). Cancer cryotherapy: evolution and biology. Rev. Urol. 6(Suppl 4): S9–S19

    PubMed  Google Scholar 

  49. Wu N. Z., D. Da, T. L. Rudoll, D. Needham, A. R. Whorton, M. W. Dewhirst. (1993). Increased microvascular permeability contributes to preferential accumulation of Stealth liposomes in tumor tissue. Cancer Res. 53: 3765–3770

    PubMed  CAS  Google Scholar 

  50. Yuan F., M. Leunig, S. K. Huang, D. A. Berk, D. Papahadjopoulos, R. K. Jain. (1994). Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 54: 3352–3356

    PubMed  CAS  Google Scholar 

  51. Zhang A., S. Cheng, D. Gao, L. X. Xu. (2005). Thermal stress study of two different artery cryopreservation methods. Cryoletters 26: 113–120

    PubMed  CAS  Google Scholar 

  52. Zhang A., L. X. Xu, G. A. Sandison, S. Cheng. (2006). Morphological study of endothelial cells during freezing. Phys. Med. Biol. 51: 6047–6060

    Article  PubMed  CAS  Google Scholar 

  53. Zook N., J. Hussmann, R. Brown, R. Russell, J. Kucan, A. Roth, H. Suchy. (1998). Microcirculatory studies of frostbite injury. Ann. Plast. Surg. 40: 246–253

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work has been supported by the National Natural Science Foundation of China (50436030, 50506016, 50725622).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa X. Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Y., Liu, P., Zhang, A. et al. Study on Tumor Microvasculature Damage Induced by Alternate Cooling and Heating. Ann Biomed Eng 36, 1409–1419 (2008). https://doi.org/10.1007/s10439-008-9511-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9511-2

Keywords

Navigation