Skip to main content
Log in

Potential Effect of Geometry on Wall Shear Stress Distribution Across Scaffold Surfaces

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Bioreactors are used as cell culture systems for growth and maintenance of tissue-engineered scaffolds that serve as three-dimensional (3D) templates for initial cell attachment and subsequent tissue formation. The bioreactors’ fluid dynamic environment is known to play a crucial role in the synthesis of cellular components via flow-mediated mechanical stimuli. Computational fluid dynamics (CFD) models in the slow turning lateral vessel (STLV® Synthecon, Inc.) were simulated under Couette flow conditions. Systematic research of the wall shear stress (WSS) effects on the scaffold’s geometry has been limited. Therefore, direct qualitative and quantitative correlations for WSS values were performed by analyzing and comparing WSS value distributions of two scaffold shapes. Under experimental flow conditions, the disc and prolate spheroid shapes exhibited dissimilar WSS distribution. Nonetheless, when compared to the disc models, the high pressure stagnation region of the spheroid was reduced between 60% and 95%. In the spheroid shape, approximately 40% increase in the shear stress surface exposure to flow ranged from 2 to 3 dyn/cm2. These values suggest that WSSs are likely affected by scaffold shape and vary little with location within the Synthecon® STLV. The proposed simulation studies evidenced the CFD model’s flexibility to characterize and quantify forces affecting tissue-engineered scaffold design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Begley C. M., Kleis S. J. (2000) The fluid dynamic and shear environment in the NASA/JSC rotating-wall perfused-vessel bioreactor. Biotechnol. Bioeng. 70(1):32–40

    Article  PubMed  CAS  Google Scholar 

  2. Begley C. M., Kleis S. J. (2002) RWPV bioreactor mass transport: earth-based and in microgravity. Biotechnol. Bioeng. 80(4): 465–476

    Article  PubMed  CAS  Google Scholar 

  3. Bettinger C. J., Weinberg E. J., Kulig K. M., Vacanti J. P., Wang Y., Borenstein J. T., Langer R. (2006) Three-dimensional microfluidic tissue-engineering scaffolds using a flexible biodegradable polymer. Adv. Mater. 18(2):165–169

    Article  CAS  Google Scholar 

  4. Bilgen B., Sucosky P., Neitzel G. P., Barabino G. A. (2006) Flow characterization of a wavy-walled bioreactor for cartilage tissue engineering. Biotechnol. Bioeng. 95(6):1009–1022

    Article  PubMed  CAS  Google Scholar 

  5. Blackman B. R., Thibault L. E., Barbee K. A. (2000) Selective modulation of endothelial cell [Ca2+]; response to flow by the onset rate of shear stress. J. Biomech. Eng. 122: 274–282

    Article  PubMed  CAS  Google Scholar 

  6. Boschetti F., Raimondi M. T., Migliavacca F., Dubini G. (2006) Prediction of the micro-fluid dynamic environment imposed to three-dimensional engineered cell systems in bioreactors. J. Biomech. 39(3):418–425

    PubMed  Google Scholar 

  7. Botchwey E. A., Pollack S. R., Levine E. M., Johnston E. D., Laurencin C. T. (2001) Bone tissue engineering in a rotating bioreactor using a microcarrier matrix system. J. Biomed. Mater. Res. 55(2):242–253

    Article  PubMed  CAS  Google Scholar 

  8. Botchwey E. A., Pollack S. R., Levine E. M., Johnston E. D., Laurencin C. T. (2004) Quantitative analysis of three-dimensional fluid flow in rotating bioreactors for tissue engineering. J. Biomed. Mater. Res. A 69(2):205–215

    Article  PubMed  CAS  Google Scholar 

  9. Computational Fluid Dynamics Research Corporation [CFDRC]. Multidisciplinary engineering solutions. CFD-ACE (U) User Manual. Huntsville, 2002, pp. 1–20.

  10. Freed L. E., Langer R., Martin I., Pellis N. R., Vunjak-Novakovic G. (1997) Tissue engineering of cartilage in space. Proc. Natl. Acad. Sci. USA 94: 13885–13890

    Article  PubMed  CAS  Google Scholar 

  11. Freed L. E., Vunjak-Novakovic G. (1995) Cultivation of cell-polymer tissue scaffolds in simulated microgravity. Biotechnol. Bioeng. 46:306–313

    Article  CAS  PubMed  Google Scholar 

  12. Freed L. E., Vunjak-Novakovic G. (1996) Biomedical reactors: mixing patterns in oscillating and rotating vessels. J. Serb. Chem. Soc. 61(4–5):283–295

    CAS  Google Scholar 

  13. Gao H., Ayyaswamy P. S., Ducheyne P. (1997) Dynamics of a microcarrier particle in the simulated microgravity environment of a rotating-wall vessel. Microgravity Sci. Technol. 10(3):154–165

    PubMed  CAS  Google Scholar 

  14. Goldstein A. S., Juarez T. M., Helmke C. D., Gustin M. C., Mikos A. G. (2001) Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials 22(11):1279–1288

    Article  PubMed  CAS  Google Scholar 

  15. Hammond T. G., Hammond J. M. (2001) Optimized suspension culture: the rotating-wall vessel. Am. J. Physiol. Renal Physiol. 281: F12–F25

    PubMed  CAS  Google Scholar 

  16. Langer R. (1999) Selected advances in drug delivery and tissue engineering. J. Control Release 62: 7–11

    Article  PubMed  CAS  Google Scholar 

  17. Langer R., Vacanti J. (1993) Tissue engineering. Science 260(5110):920–926

    Article  PubMed  CAS  Google Scholar 

  18. Lanza R. P., Langer R., Vacanti J. (2000) Principles of Tissue Engineering. Academic Press, San Diego, pp. 9–205

    Google Scholar 

  19. Martin I., Wendt D., Heberer M. (2004) The role of bioreactors in tissue engineering. Trends Biotechnol. 22(2):80–86

    Article  PubMed  CAS  Google Scholar 

  20. Neitzel G. P., Nerem R. M., Sambanis A., Smith M. K., Wick T. M., Brown J. B., Hunter C., Jovanovic I., Saini P., Tan S. (1998) Cell function and tissue growth in bioreactors: fluid mechanical and chemical environments. J. Jpn. Soc. Microgr. Appl. 15(Suppl. II):602–607

    Google Scholar 

  21. Obradovic, B., R. L. Carrier, G. Vunjak-Novakovic, L. E. Freed. Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnol. Bioeng. 63(2), 197–205, 1999

    Article  PubMed  CAS  Google Scholar 

  22. Patankar, S. V. Numerical Heat Transfer and Fluid Flow: Computational Methods in Mechanics and Thermal Science. Hemisphere Publishing Corporation, 1980, pp. 41–153

  23. Patel A., Fine B., Sandig M., Mequanint K. (2006) Elastin biosynthesis: the missing link in tissue-engineered blood vessels. Cardiovasc. Res. 71(1):40–49

    Article  PubMed  CAS  Google Scholar 

  24. Porter B., Zauel R., Stockman H., Guldberg R., Fyhrie D. (2005) 3-D computational modeling of media flow through scaffolds in a perfusion bioreactor. J. Biomech. 39:543–549

    Article  Google Scholar 

  25. Prakash S., Ethier C. R. (2001) Requirements for mesh resolution in 3d computational hemodynamics. J. Biomech. Eng. 123:134–144

    Article  PubMed  CAS  Google Scholar 

  26. Sachlos E., Czermuszka J. T. (2003) Making tissue engineering scaffolds work. Review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur. Cell Mater. 5:29–46

    PubMed  CAS  Google Scholar 

  27. Saltzman W. M. (2004) Tissue Engineering, Principles for the Design of Replacements Organs and Tissues. Oxford University Press, New York, pp. 5–67

    Google Scholar 

  28. Shoufeng Y., Leong K. H., Du Z., Chua C. (2001) The design of scaffolds for use in tissue engineering part i traditional factors. Tissue Eng. 7(6):679–687

    Article  Google Scholar 

  29. Shyy J. Y. (2001) Mechanotransduction in endothelial responses to shear stress: review of work in Dr. Chien’s laboratory. Biorheology. 38:109–117

    PubMed  CAS  Google Scholar 

  30. Sucosky P., Osorio D. F., Brown J. B., Neitzel G. P. (2004) Fluid mechanics of a spinner-flask bioreactor. Biotechnol. Bioeng. 85(1):34–46

    Article  PubMed  CAS  Google Scholar 

  31. Vacanti J. P. (2003) Tissue and organ engineering: can we build intestine and vital organs? J. Gastrointest. Surg. 7(7):831–835

    Article  PubMed  Google Scholar 

  32. White F. M. (1974) Solutions of the Newtonian Viscous-flow Equations. Viscous fluid flow. McGraw-Hill, New York, pp. 110–112

    Google Scholar 

  33. Williams K. A., Saini S., Wick T. M. (2002) Computational fluid dynamics modeling of steady-state momentum and mass transport in a bioreactor for cartilage tissue engineering. Biotechnol. Prog. 18: 951–963

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Schoephoerster for his collaboration and advice. We are also grateful to Dr. Moore and Dr. Nandini for their technical guidance on computational fluid dynamics and Dr. Sukop for his contribution and assistance. Florida International University Department of Biomedical Engineering for research support. We like to thank also Synthecon, Inc for the STLV figures and geometric consultations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald A. Gutierrez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutierrez, R.A., Crumpler, E.T. Potential Effect of Geometry on Wall Shear Stress Distribution Across Scaffold Surfaces. Ann Biomed Eng 36, 77–85 (2008). https://doi.org/10.1007/s10439-007-9396-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9396-5

Keywords

Navigation