Skip to main content

Advertisement

Log in

Controlled Release in Transdermal Pressure Sensitive Adhesives using Organosilicate Nanocomposites

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Polydimethyl siloxane (PDMS) based pressure sensitive adhesives (PSA) incorporating organo-clays at different loadings were fabricated via solution casting. Partially exfoliated nanocomposites were obtained for the hydroxyl terminated PDMS in ethyl acetate solvent as determined by X-ray diffraction and atomic force microscopy. Drug release studies showed that the initial burst release was substantially reduced and the drug release could be controlled by the addition of organo-clay. Shear strength and shear adhesion failure temperature (SAFT) measurements indicated substantial improvement in adhesive properties of the PSA nanocomposite adhesives. Shear strength showed more than 200% improvement at the lower clay loadings and the SAFT increased by about 21% due to the reinforcement provided by the nano-dispersed clay platelets. It was found that by optimizing the level of the organosilicate additive to the polymer matrix, superior control over drug release kinetics and simultaneous improvements in adhesive properties could be attained for a transdermal PSA formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bharadwaj R. K. (2001) Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules 34: 9189–9192

    Article  CAS  Google Scholar 

  2. Brown M. B., G. P. Martin, S. A. Jones, F. K. Akomeah (2006) Dermal and transdermal drug delivery systems: current and future prospects. Drug Deliv. 13: 175–187

    Article  PubMed  CAS  Google Scholar 

  3. Carslaw H. S., J. C. Jaeger (1959) Conduction of Heat in Solids. New York: Oxford Science Publications

    Google Scholar 

  4. Chou, C.-S., E. E. Lafleur, D. P. Lorah, R. V. Slone, and K. D. Neglia, US Patent 6838507, Rohm and Haas Company, 2005

  5. Comyn J. (1985). Polymer Permeability. London, UK: Elsevier

    Google Scholar 

  6. Crank J. (1975) The Mathematics of Diffusion. Oxford, UK: Clarendon

    Google Scholar 

  7. Cypes Stephen H., W. M. Saltzman, P. Giannelis Emmanuel (2003) Organosilicate-polymer drug delivery systems: controlled release and enhanced mechanical properties. J. Control. Release 90: 163–169

    Article  PubMed  CAS  Google Scholar 

  8. Eitzmann D. M., R. R. Melkote, E. L. Cussler (1996) Barrier membranes with tipped impermeable flakes. AIChE J. 42: 2–9

    Article  Google Scholar 

  9. Fu X., S. Qutubuddin (2001) Polymer-clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene. Polymer 42: 807–813

    Article  CAS  Google Scholar 

  10. Fu X. A., S. Qutubuddin (2005) Swelling behavior of organoclays in styrene and exfoliation in nanocomposites. J. Colloid Interface Sci. 283: 373–379

    Article  PubMed  CAS  Google Scholar 

  11. Giannelis E. P. (1996) Polymer layered silicate nanocomposites. Adv. Mater. 8: 29–35

    Article  CAS  Google Scholar 

  12. Karande P., A. Jain, S. Mitragotri (2004) Discovery of transdermal penetration enhancers by high-throughput screening. Nat. Biotechnol. 22: 192–197

    Article  PubMed  CAS  Google Scholar 

  13. Karande P., A. Jain, S. Mitragotri (2006) Insights into synergistic interactions in binary mixtures of chemical permeation enhancers for transdermal drug delivery. J. Control. Release 115: 85–93

    Article  PubMed  CAS  Google Scholar 

  14. Krishnamoorti R., R. A. Vaia (eds) (2002) Polymer Nanocomposites: Synthesis, Characterization, and Modeling, Vol. 124. Oxford University Press, Washington, DC

    Google Scholar 

  15. LeBaron P. C., T. J. Pinnavaia (2001) Clay nanolayer reinforcement of silicone elastomer. Chem. Mater. 13: 3760–3765

    Article  CAS  Google Scholar 

  16. Lee W. -F., Y. -C. Chen (2004). Effect of bentonite on the physical properties and drug-release behavior of poly(AA-co-PEGMEA)/bentonite nanocomposite hydrogels for mucoadhesive. J. Appl. Polymer Sci. 91: 2934–2941

    Article  CAS  Google Scholar 

  17. Lofton, L. in PSTC Tech XXVII, Dahlquist Award Paper, http://www.pstc.org/papers/pdfs/lofton.pdf, Orlando, 2004

  18. Naik A., Y. N. Kalia, R.H. Guy (2000). Transdermal drug delivery: overcoming the skin’s barrier function. Pharm. Sci. Technol. Today 3: 318–326

    Article  PubMed  CAS  Google Scholar 

  19. Nielsen L. E. (1967). Models for the permeability of filled polymer systems. J. Macromol. Sci. (Chem) A1: 929–942

    Article  Google Scholar 

  20. Qutubuddin S., X. Fu Polymer-clay nanocomposites: synthesis and properties, In Rosoff M. (ed.) Nano-Surface Chemistry, Marcel Dekker Inc., New York, 2002

    Google Scholar 

  21. Ray S. S., M. Okamoto (2003). Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polymer Sci 28: 1539–1641

    Article  CAS  Google Scholar 

  22. Salvado N. V. I., V. V. Shah, D. A. Werkema (1999). Surfactants in pressure sensitive adhesives. Surf. Coatings Int. 82: 181–185

    Article  CAS  Google Scholar 

  23. Schmidt D. F., F. Clement, E. P. Giannelis (2006). On the origins of silicate dispersion in polysiloxane/layered-silicate nanocomposites. Adv. Funct. Mater. 16: 417–425

    Article  CAS  Google Scholar 

  24. Staskin D. R. (2003) Transdermal systems for overactive bladder: principles and practice. Rev. Urol. 5: S26–S30

    PubMed  Google Scholar 

  25. Surber C., K. P. Wilhelm, D. Bermann, H. I. Maibach (1993). In vivo skin penetration of acitretin in volunteers using three sampling techniques. Pharm. Res. 10: 1291–1294

    Article  PubMed  CAS  Google Scholar 

  26. Takeuchi H., C. Cohen (1999) Reinforcement of poly(dimethylsiloxane) elastomers by chain-end anchoring to clay particles. Macromolecules 32: 6792–6799

    Article  CAS  Google Scholar 

  27. Teh P. L., Z. A. M. Ishak, A. S. Hashim, J. Karger-Kocsis, U. S. Ishiaku (2006). Physical properties of natural rubber/organoclay nanocomposites compatibilized with epoxidized natural rubber. J. Appl. Polymer Sci. 100: 1083–1092

    Article  CAS  Google Scholar 

  28. Venkatraman S., R. Gale (1998) Skin adhesives and skin adhesion. 1. Transdermal drug delivery systems. Biomaterials 19: 1119–1136

    Article  PubMed  CAS  Google Scholar 

  29. Willhelm K. P., K. Surber, H. I. Maibach (1991). Effect of sodium lauryl sulfate induced skin irrigation on in vivo percutaneous penetration of four drugs. J. Invest. Dermatol. 97: 927–932

    Article  Google Scholar 

  30. Xu R., E. Manias, A. J. Snyder, J. Runt (2001). New biomedical poly(urethane urea) layered silicate nanocomposites. Macromolecules 34: 1989–1992

    Google Scholar 

Download references

Acknowledgment

The research was supported in part by a grant from the National Institutes of Health (EB006203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harihara Baskaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaikh, S., Birdi, A., Qutubuddin, S. et al. Controlled Release in Transdermal Pressure Sensitive Adhesives using Organosilicate Nanocomposites. Ann Biomed Eng 35, 2130–2137 (2007). https://doi.org/10.1007/s10439-007-9369-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9369-8

Keywords

Navigation