Skip to main content
Log in

Planar Biaxial Creep and Stress Relaxation of the Mitral Valve Anterior Leaflet

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A fundamental assumption in mitral valve (MV) therapies is that a repaired or replaced valve should mimic the functionality of the native valve as closely as possible. Thus, improvements in valvular treatments are dependent on the establishment of a complete understanding of the function and mechanical properties of the native normal MV. In a recent study [Grashow et al. ABME 34(2), 2006] we demonstrated that the planar biaxial stress–strain relationship of the MV anterior leaflet (MVAL) exhibited minimal hysteresis and a stress–strain response independent of strain rate, suggesting that MVAL could be modeled as a “quasi-elastic” material. The objective of our current study was to expand these results to provide a more complete picture of the time-dependent mechanical properties of the MVAL. To accomplish this, biaxial stress-relaxation and creep studies were performed on porcine MVAL specimens. Our primary finding was that while the MVAL leaflet exhibited significant stress relaxation, it exhibited negligible creep over the 3-h test. These results furthered our assertion that the MVAL functionally behaves not as a linear or non-linear viscoelastic material, but as an anisotropic quasi-elastic material. These results appear to be unique in the soft tissue literature; suggesting that valvular tissues are unequalled in their ability to withstand significant loading without time-dependent material effects. Moreover, insight into these specialized characteristics can help guide and inform efforts directed toward surgical repair and engineered valvular tissue replacements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  1. Accola K. D., M. L. Scott, P. A. Thompson, G. J. Palmer, M. E. Sand, G. Ebra (2005). Midterm outcomes using the physio ring in mitral valve reconstruction: experience in 492 patients. Ann Thorac Surg 79(4): 1276–1283 (discussion 1276–1283)

    Article  PubMed  Google Scholar 

  2. Baptist Health Foundation, I. The Autonomic Disorders Mitral Valve Prolapse Center, Webspace Enterprises. 2005, 2003

  3. Butler D. L., S. A. Goldstein, F. Guilak (2000). Functional tissue engineering: the role of biomechanics. J Biomech Eng 122(6): 570–575

    Article  PubMed  CAS  Google Scholar 

  4. Cohn L. H., G. S. Couper, S. F. Aranki, R. J. Rizzo, D. H. Adams, J. J. Collins Jr. (1994). The long-term results of mitral valve reconstruction for the floppy valve. J Card Surg 9(2 Suppl): 278–281

    PubMed  CAS  Google Scholar 

  5. Cole W. G., D. Chan, A. J. Hickey, D. E. Wilcken (1984). Collagen composition of normal and myxomatous human mitral heart valves. Biochem J 219(2): 451–460

    PubMed  CAS  Google Scholar 

  6. David T. E., S. Armstrong, Z. Sun, L. Daniel (1993). Late results of mitral valve repair for mitral regurgitation due to degenerative disease. Ann Thorac Surg 56(1): 7–12 (discussion 13–14)

    Article  PubMed  CAS  Google Scholar 

  7. Dunn M. G., F. H. Silver (1983). Viscoelastic behavior of human connective tissues: relative contribution of viscous and elastic components. Connect Tissue Res 12(1): 59–70

    PubMed  CAS  Google Scholar 

  8. Einstein D. R., K. S. Kunzelman, P. G. Reinhall, R. P. Cochran, M. A. Nicosia (2004). Haemodynamic determinants of the mitral valve closure sound: a finite element study. Med Biol Eng Comput 42(6): 832–846

    Article  PubMed  CAS  Google Scholar 

  9. Enriquez-Sarano M., J. F. Avierinos, D. Messika-Zeitoun, D. Detaint, M. Capps, V. Nkomo, C. Scott, H. V. Schaff, A. J. Tajik (2005). Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N Engl J Med 352(9): 875–883

    Article  PubMed  CAS  Google Scholar 

  10. Fasol R., J. Meinhart, M. Deutsch, T. Binder (2004). Mitral valve repair with the Colvin-Galloway Future Band. Ann Thorac Surg 77(6): 1985–1988 (discussion 1988)

    Article  PubMed  Google Scholar 

  11. Flameng W., P. Herijgers, K. Bogaerts (2003). Recurrence of mitral valve regurgitation after mitral valve repair in degenerative valve disease. Circulation 107(12): 1609–1613

    Article  PubMed  Google Scholar 

  12. Fung Y. C. (1993). Biomechanics: Mechanical Properties of Living Tissues. Springer Verlag, New York

    Google Scholar 

  13. Gillinov A. M., D. M. Cosgrove 3rd, T. Shiota, J. Qin, H. Tsujino, W. J. Stewart, J. D. Thomas, M. Porqueddu, J. A. White, E. H. Blackstone (2000). Cosgrove-Edwards Annuloplasty System: midterm results. Ann Thorac Surg 69(3): 717–721

    Article  PubMed  CAS  Google Scholar 

  14. Gillinov A. M., D. M. Cosgrove, E. H. Blackstone, R. Diaz, J. H. Arnold, B. W. Lytle, N. G. Smedira, J. F. Sabik, P. M. McCarthy, F. D. Loop (1998). Durability of mitral valve repair for degenerative disease. J Thorac Cardiovasc Surg 116(5): 734–743

    Article  PubMed  CAS  Google Scholar 

  15. Grashow J. S., A. P. Yoganathan, M. S. Sacks (2006). Biaxial stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Ann Biomed Eng 34(2): 315–325

    Article  PubMed  Google Scholar 

  16. Haut R.C. (1983). Age-dependent influence of strain rate on the tensile failure of rat-tail tendon. J Biomech Eng 105(3): 296–299

    Article  PubMed  CAS  Google Scholar 

  17. Kontos J., V. Papademetriou, K. Wachtell, V. Palmieri, J. E. Liu, E. Gerdts, K. Boman, M. S. Nieminen, B. Dahlof, R. B. Devereux (2004). Impact of valvular regurgitation on left ventricular geometry and function in hypertensive patients with left ventricular hypertrophy: the LIFE study. J Hum Hypertens 18(6): 431–436

    Article  PubMed  CAS  Google Scholar 

  18. Kunzelman K. S., R. P. Cochran, C. Chuong, W. S. Ring, E. D. Verrier, R. D. Eberhart (1993). Finite element analysis of the mitral valve. J Heart Valve Dis 2(3): 326–340

    PubMed  CAS  Google Scholar 

  19. Lam J. H., N. Ranganathan, E. D. Wigle, M. D. Silver (1970). Morphology of the human mitral valve. I. Chordae tendineae: a new classification. Circulation 41(3): 449–458

    PubMed  CAS  Google Scholar 

  20. Lee J., S. Haberer, C. Pereira, W. Naimark, D. Courtman, G. Wilson (1994). High Strain Rate Testing and Structural Analysis of Pericardial Bioprosthetic Materials. Biomaterials’ Mechanical Properties. H. Kambic and A. Yokobori. Philadelphia, ASTM. STP 1173: 19–42

    Google Scholar 

  21. Lee J. M., D. R. Boughner (1985). Mechanical properties of human pericardium. Differences in viscoelastic response when compared with canine pericardium. Circ Res 57(3): 475–481

    PubMed  CAS  Google Scholar 

  22. Lee J. M., D. W. Courtman, D. R. Boughner (1984). The glutaraldehyde-stabilized porcine aortic valve xenograft. I. Tensile viscoelastic properties of the fresh leaflet material. J Biomed Mater Res 18(1): 61–77

    Article  PubMed  CAS  Google Scholar 

  23. Lee J. M., D. W. Courtman, D. R. Boughner (1984). The glutaraldehyde-stablized porcine aortic valve xenograft. I. Tensile viscoelastic properties of the fresh leaflet material. Journal of Biomedical Materials Research 18: 61–77

    Article  PubMed  CAS  Google Scholar 

  24. Leeson-Dietrich J., D. Boughner, I. Vesely (1995). Porcine Pulmonary and Aortic Valves: A Comparison of Their Tensile Viscoelastic Properties at Physiological Strain Rates. The Journal of Heart Valve Disease 4: 88–94

    PubMed  CAS  Google Scholar 

  25. Liao J., I. Vesely (2004). Relationship between collagen fibrils, glycosaminoglycans, and stress relaxation in mitral valve chordae tendineae. Ann Biomed Eng 32(7): 977–983

    Article  PubMed  Google Scholar 

  26. Lim K. H., J. H. Yeo, C. M. Duran (2005). Three-dimensional asymmetrical modeling of the mitral valve: a finite element study with dynamic boundaries. J Heart Valve Dis 14(3): 386–392

    PubMed  Google Scholar 

  27. Ling L. H., M. Enriquez-Sarano, J. B. Seward, A. J. Tajik, H. V. Schaff, K. R. Bailey, R. L. Frye (1996). Clinical outcome of mitral regurgitation due to flail leaflet. N Engl J Med 335(19): 1417–1423

    Article  PubMed  CAS  Google Scholar 

  28. Lis Y., M. C. Burleigh, D. J. Parker, A. H. Child, J. Hogg, M. J. Davies (1987). Biochemical characterization of individual normal, floppy and rheumatic human mitral valves. Biochem J 244(3): 597–603

    PubMed  CAS  Google Scholar 

  29. May-Newman K., F. C. Yin (1995). Biaxial mechanical behavior of excised porcine mitral valve leaflets. Am J Physiol 269(4 Pt 2): H1319–H1327

    PubMed  CAS  Google Scholar 

  30. Merryman W. D., H.-Y. S. Huang, F. J. Schoen, M. S. Sacks (2006). The effects of cellular contraction on aortic valve leaflet flexural stiffness. J Biomech 39(1): 88–96

    Article  PubMed  Google Scholar 

  31. Nagatomi J., D. C. Gloeckner, M. B. Chancellor, W. C. DeGroat, M. S. Sacks (2004). Changes in the biaxial viscoelastic response of the urinary bladder following spinal cord injury. Ann Biomed Eng 32(10): 1409–1419

    Article  PubMed  Google Scholar 

  32. Naimark W. A., J. M. Lee, H. Limeback, D. Cheung (1992). Correlation of structure and viscoelastic properties in the pericardia of four mammalian species. American Journal of Physiology 263(32): H1095–H1106

    PubMed  CAS  Google Scholar 

  33. Ormiston J. A., P. M. Shah, C. Tei, M. Wong (1981). Size and motion of the mitral valve annulus in man. I. A two-dimensional echocardiographic method and findings in normal subjects. Circulation 64(1): 113–120

    PubMed  CAS  Google Scholar 

  34. Otto C. M. (2004). Valvular Heart Disease. Saunders, Philadelphia

    Google Scholar 

  35. Pierard L. A., P. Lancellotti (2004). The role of ischemic mitral regurgitation in the pathogenesis of acute pulmonary edema. N Engl J Med 351(16): 1627–1634

    Article  PubMed  CAS  Google Scholar 

  36. Provenzano P., R. Lakes, T. Keenan, R. Vanderby Jr. (2001). Nonlinear ligament viscoelasticity. Ann Biomed Eng 29(10): 908–914

    Article  PubMed  CAS  Google Scholar 

  37. Ranganathan N., J. H. Lam, E. D. Wigle, M. D. Silver (1970). Morphology of the human mitral valve. II. The value leaflets. Circulation 41(3): 459–67

    PubMed  CAS  Google Scholar 

  38. Rigby R., N. Hiraj, J. Spikes, H. Eyring (1959). The mechanical properties of rat tail tendon. The J. General Physiol. 43: 265–282

    Article  CAS  Google Scholar 

  39. Sacks M.S. (2000). Biaxial mechanical evaluation of planar biological materials. J. Elasticity 61: 199–246

    Article  Google Scholar 

  40. Sacks, M. S., Y. Enomoto, J. R. Graybill, W. D. Merryman, A. Zeeshan, A. P. Yoganathan, R. J. Levy, R. C. Gorman, J. H. Gorman, 3rd. In-vivo dynamic deformation of the mitral valve anterior leaflet. Annals Thoracic Surgery, In-press

  41. Sacks M. S., Z. He, L. Baijens, S. Wanant, P. Shah, H. Sugimoto, A. P. Yoganathan (2002). Surface strains in the anterior leaflet of the functioning mitral valve. Annals Biomed Eng 30(10): 1281–1290

    Article  CAS  Google Scholar 

  42. Salgo I. S., J. H. Gorman 3rd, R. C. Gorman, B. M. Jackson, F. W. Bowen, T. Plappert, M. G. St John Sutton, L. H. Edmunds Jr. (2002). Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation 106(6): 711–717

    Article  PubMed  Google Scholar 

  43. Silverman M. E., J. W. Hurst (1968). The mitral complex. Interaction of the anatomy, physiology, and pathology of the mitral annulus, mitral valve leaflets, chordae tendineae, and papillary muscles. Am Heart J 76(3): 399–418

    Article  PubMed  CAS  Google Scholar 

  44. Thornton G. M., A. Oliynyk, C. B. Frank, N. G. Shrive (1997). Ligament creep cannot be predicted from stress relaxation at low stress: a biomechanical study of the rabbit medial collateral ligament. J Orthop Res 15(5): 652–656

    Article  PubMed  CAS  Google Scholar 

  45. Thornton G. M., N. G. Shrive, C. B. Frank (2002). Ligament creep recruits fibres at low stresses and can lead to modulus-reducing fibre damage at higher creep stresses: a study in rabbit medial collateral ligament model. J Orthop Res 20(5): 967–974

    Article  PubMed  CAS  Google Scholar 

  46. Vesely I., D. R. Boughner, J. Leeson-Dietrich (1995). Bioprosthetic Valve Tissue Viscoelasticity: Implications on Accelerated Pulse Duplicator Testing. Annals Thoracic Surgery 60: S379–383

    Article  CAS  Google Scholar 

  47. Weinberg E. J. and M. R. Kaazempur Mofrad. A finite shell element for heart mitral valve leaflet mechanics, with large deformations and 3D constitutive material model. J Biomech, 2006

  48. Wells P. B., J. L. Harris, J. D. Humphrey (2004). Altered mechanical behavior of epicardium under isothermal biaxial loading. J Biomech Eng 126(4): 492–497

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by NIH grant HL-52009. MSS is an Established Investigator of the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Sacks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grashow, J.S., Sacks, M.S., Liao, J. et al. Planar Biaxial Creep and Stress Relaxation of the Mitral Valve Anterior Leaflet. Ann Biomed Eng 34, 1509–1518 (2006). https://doi.org/10.1007/s10439-006-9183-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9183-8

Navigation