Skip to main content
Log in

Fluid Dynamic Assessment of Three Polymeric Heart Valves Using Particle Image Velocimetry

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Polymeric heart valves have the potential to reduce thrombogenic complications associated with current mechanical valves and overcome fatigue-related problems experienced by bioprosthetic valves. In this paper we characterize the in vitro velocity and Reynolds Shear Stress (RSS) fields inside and downstream of three different prototype trileaflet polymeric heart valves. The fluid dynamic differences are then correlated with variations in valve design parameters. The three valves differ in leaflet thickness, ranging from 80 to 120 μm, and commisural design, either closed, opened, or semi-opened. The valves were subjected to aortic flow conditions and the velocity measured using three-dimensional stereo Particle Image Velocimetry. The peak forward flow phase in the three valves was characterized by a strong central orifice jet of approximately 2 m/s with a flat profile along the trailing edge of the leaflets. Leakage jets, with principle RSS magnitudes exceeding 4,500 dyn/cm2, were observed in all valves with larger leaflet thicknesses and also corresponded to larger leakage volumes. Additional leakage jets were observed at the commissural region of valves with the open and the semi-open commissural designs. The results of the present study indicate that commissural design and leaflet thickness influence valve fluid dynamics and thus the thrombogenic potential of trileaflet polymeric valves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.
FIGURE 10.
FIGURE 11.
FIGURE 12.
FIGURE 13.
FIGURE 14.
FIGURE 15.
FIGURE 16.
FIGURE 17.

Similar content being viewed by others

REFERENCES

  1. Bernacca, G. M., T. G. Mackay, M. J. Gulbransen, A. W. Donn, and D. J. Wheatley. Polyurethane heart valve durability: Effects of leaflet thickness and material. Int. J. Artif. Organs 20(6):327–331, 1997.

    PubMed  CAS  Google Scholar 

  2. Bernacca, G. M., T. G. Mackay, R. Wilkinson, and D. J. Wheatley. Calcification and fatigue failure in a polyurethane heart value. Biomaterials 16(4):279–285, 1995.

    Article  PubMed  CAS  Google Scholar 

  3. Bernacca, G. M., B. O'Connor, D. F. Williams, and D. J. Wheatley. Hydrodynamic function of polyurethane prosthetic heart valves: Influences of Young's modulus and leaflet thickness. Biomaterials 23(1):45–50, 2002.

    Article  PubMed  CAS  Google Scholar 

  4. Bodnar, E., and R. Frater, eds. Replacement Cardiac Valves. New York: Pergamon press, 1991, p.482.

  5. Chandran, K. B., R. Fatemi, R. Schoephoerster, D. Wurzel, G. Hansen, G. Pantalos, L. S. Yu, and W. J. Kolff. In vitro comparison of velocity profiles and turbulent shear distal to polyurethane trileaflet and pericardial prosthetic valves. Artif. Organs 13(2):148–154, 1989.

    Article  PubMed  CAS  Google Scholar 

  6. Daebritz, S. H., B. Fausten, B. Hermanns, J. Schroeder, J. Groetzner, R. Autschbach, B. J. Messmer, and J. S. Sachweh. Introduction of a flexible polymeric heart valve prosthesis with special design for aortic position. Eur. J. Cardiothorac. Surg.. 25(6):946–952, 2004.

    Article  PubMed  Google Scholar 

  7. Daebritz, S. H., J. S. Sachweh, B. Hermanns, B. Fausten, A. Franke, J. Groetzner, B. Klosterhalfen, and B. J. Messmer. Introduction of a flexible polymeric heart valve prosthesis with special design for mitral position. Circulation 108 (Suppl 1):II134–II139, 2003.

    PubMed  Google Scholar 

  8. Ellis, J. T., T. M. Healy, A. A. Fontaine, R. Saxena, and A. P. Yoganathan. Velocity measurements and flow patterns within the hinge region of a Medtronic Parallel bileaflet mechanical valve with clear housing. J. Heart Valve Dis. 5(6):591–599, 1996.

    PubMed  CAS  Google Scholar 

  9. Ellis, J. T., and A. P. Yoganathan. A comparison of the hinge and near-hinge flow fields of the St Jude medical hemodynamic plus and regent bileaflet mechanical heart valves. J. Thorac. Cardiovasc. Surg. 119(1):83–93, 2000.

    Article  PubMed  CAS  Google Scholar 

  10. Goldsmith, I., S. Mukundan, A. Nugent, and M. D. Rosin. Early clinical experience with the Tissuemed porcine bioprosthesis. Ann. Thorac. Surg. 66(Suppl 6 ):S259–S263, 1998.

    Article  PubMed  CAS  Google Scholar 

  11. Herold, M., H. B. Lo, H. Reul, H. Muckter, K. Taguchi, M. Giesiepen, G. Birkle, G. Hollweg, G. Rau, and B. J. Messmer. The Helmoltz-institute-tri-leaflet-polyurethane-heart valve prosthesis: Design, manufacturing and first in-vitro and in vivo results. In: Polyurethanes in Biomedical Engineering II, edited by H. E. A. Planck. Elsevier Science Publishers, 1987, pp. 231–268.

  12. Hyde, J. A., J. A. Chinn, and R. E. Phillips Jr.. Polymer heart valves. J. Heart Valve Dis. 8(3):331–339, 1999.

    PubMed  CAS  Google Scholar 

  13. Jamieson, W. R., L. H. Burr, W. N. Anderson Jr., J. B. Chambers, J. P. Gams, and C. M. Dowd. Prosthesis-related complications: First-year annual rates. J. Heart Valve Dis. 11(6):758–763, 2002.

    PubMed  Google Scholar 

  14. Jansen, J., S. Willeke, B. Reiners, P. Harbott, H. Reul, H. B. Lo, S. Dabritz, C. Rosenbaum, A. Bitter, and K. Ziehe. Advances in design principle and fluid dynamics of a flexible polymeric heart valve. ASAIO Trans. 37(3):M451–M453, 1991.

    PubMed  CAS  Google Scholar 

  15. Leat, M. E., and J. Fisher. The influence of manufacturing methods on the function and performance of a synthetic leaflet heart valve. Proc. Inst. Mech. Eng. [H]. 209(1):65–69, 1995.

    CAS  Google Scholar 

  16. Leo, H. L., H. Simon, J. Carberry, S. C. Lee, and A. P. Yoganathan. A comparison of flow field structures of two tri-leaflet polymeric heart valves. Ann. Biomed. Eng. 33(4):429–443, 2005.

    Article  PubMed  Google Scholar 

  17. Lu, P. C., H. C. Lai, and J. S. Liu. A reevaluation and discussion on the threshold limit for hemolysis in a turbulent shear flow. J. Biomech. 34(10):1361–1364, 2001.

    Article  PubMed  CAS  Google Scholar 

  18. Mackay, T. G., D. J. Wheatley, G. M. Bernacca, A. C. Fisher, and C. S. Hindle. New polyurethane heart valve prosthesis: Design, manufacture and evaluation. Biomaterials 17(19):1857–1863, 1996.

    Article  PubMed  CAS  Google Scholar 

  19. Sallam, A. M., and N. H. Hwang. Human red blood cell hemolysis in a turbulent shear flow: Contribution of Reynolds shear stresses. Biorheology 21(6):783–797, 1984.

    PubMed  CAS  Google Scholar 

  20. Turitto, V. T., and C. L. Hall. Mechanical factors affecting hemostasis and thrombosis. Thromb. Res. 92(6 Suppl 2):S25–S31, 1998.

    Article  PubMed  CAS  Google Scholar 

  21. Vyavahare, N., M. Ogle, F. J. Schoen, R. Zand, D. C. Gloeckner, M. Sacks, and R. J. Levy. Mechanisms of bioprosthetic heart valve failure: Fatigue causes collagen denaturation and glycosaminoglycan loss. J. Biomed. Mater. Res. 46(1):44–50, 1999.

    Article  PubMed  CAS  Google Scholar 

  22. Wheatley, D. J., G. M. Bernacca, M. M. Tolland, B. O'Connor, J. Fisher, and D. F. Williams. Hydrodynamic function of a biostable polyurethane flexible heart valve after six months in sheep. Int. J. Artif. Organs. 24(2):95–101, 2001.

    PubMed  CAS  Google Scholar 

  23. Woo, Y. R., F. P. Williams, and A. P. Yoganathan. In-vitro fluid dynamic characteristics of the abiomed trileaflet heart valve prosthesis. J. Biomech. Eng. 105(4):338–345, 1983.

    Article  PubMed  CAS  Google Scholar 

  24. Woo, Y. R., F. P. Williams, and A. P. Yoganathan. Steady and pulsatile flow studies on a trileaflet heart valve prosthesis. Scand. J. Thorac. Cardiovasc. Surg. 17(3):227–236, 1983.

    PubMed  CAS  Google Scholar 

  25. Yoganathan, A. P. Cardiac valve prostheses. In: The Biomedical Engineering Handbook. CRC Press LLC, pp. 127-1–127-23, 2000.

  26. Yoganathan, A. P., Y. R. Woo, H. W. Sung, F. P. Williams, R. H. Franch, and M. Jones. In vitro hemodynamic characteristics of tissue bioprostheses in the aortic position. J. Thorac. Cardiovasc. Surg. 92(2):198–209, 1986.

    PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was partially supported by a grant from the National Heart, Lung and Blood Institute (HL 720621). The authors wish to thank Aortech, Inc for providing the prototype valves.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leo, H.L., Dasi, L., Carberry, J. et al. Fluid Dynamic Assessment of Three Polymeric Heart Valves Using Particle Image Velocimetry. Ann Biomed Eng 34, 936–952 (2006). https://doi.org/10.1007/s10439-006-9117-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9117-5

Keywords

Navigation