Skip to main content

Advertisement

Log in

Study of Ocular Transport of Drugs Released from an Intravitreal Implant Using Magnetic Resonance Imaging

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Ensuring optimum delivery of therapeutic agents in the eye requires detailed information about the transport mechanisms and elimination pathways available. This knowledge can guide the development of new drug delivery devices. In this study, we investigated the movement of a drug surrogate, Gd-DTPA (Magnevist®) released from a polymer-based implant in rabbit vitreous using T1-weighted magnetic resonance imaging (MRI). Intensity values in the MRI data were converted to concentration by comparison with calibration samples. Concentration profiles approaching pseudosteady state showed gradients from the implant toward the retinal surface, suggesting that diffusion was occurring into the retinal–choroidal–scleral (RCS) membrane. Gd-DTPA concentration varied from high values near the implant to lower values distal to the implant. Such regional concentration differences throughout the vitreous may have clinical significance when attempting to treat ubiquitous eye diseases using a single positional implant. We developed a finite element mathematical model of the rabbit eye and compared the MRI experimental concentration data with simulation concentration profiles. The model utilized a diffusion coefficient of Gd-DTPA in the vitreous of 2.8×10−6, cm2, s−1 and yielded a diffusion coefficient for Gd-DTPA through the simulated composite posterior membrane (representing the retina–choroid–sclera membrane) of 6.0×10−8, cm2, s−1. Since the model membrane was 0.03-cm thick, this resulted in an effective membrane permeability of 2.0×10−6, cm, s−1. Convective movement of Gd-DTPA was shown to have minimal effect on the concentration profiles since the Peclet number was 0.09 for this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araie, M., and D. M. Maurice. The loss of fluorescein, fluorescein glucuronide and fluorescein isothiocyanate dextran from the vitreous by the anterior and retinal pathways. Exp. Eye Res. 52:27–39, 1991.

    Article  Google Scholar 

  2. Avitabile, T., F. Marano, F. Castiglione, C. Bucolo, M. Cro, L. Ambrosio, C. Ferrauto, and A. Reibaldi. Biocompatibility and biodegradation of intravitreal hyaluronan implants in rabbits. Biomaterials, 22:195–200, 2001.

    Article  Google Scholar 

  3. Berkowitz, B. A., Y. Sato, C. A. Wilson, and E. de Juan. Blood–retinal barrier breakdown investigated by real-time magnetic resonance imaging after gadolinium-diethylenetriaminepentaacetic acid injection. Invest. Ophthalmol. Vis. Sci. 32:2854–2860, 1991.

    Google Scholar 

  4. Berkowitz, B. A., P. S. Tofts, H. A. Sen, N. Ando, and E. de Juan Jr. Accurate and precise measurement of blood-retinal barrier breakdown using dynamic Gd-DTPA MRI. Invest. Ophthalmol. Vis. Sci. 33:3500–3506, 1992.

    Google Scholar 

  5. Bogdanov, A. A., Jr., R. Weissleder, H. W. Frank, A. V. Bogdanova, N. Nossif, B. K. Schaffer, E. Tsai, M. I. Papisov, and T. J. Brady. A new macromolecule as a contrast agent for MR angiography: Preparation, properties, and animal studies. Radiology,187:701–706, 1993.

    Google Scholar 

  6. Bourlais, C. L., L. Acar, H. Zia, P. A. Sado, T. Needham, and R. Leverge. Ophthalmic drug delivery systems—recent advances. Prog. Retin. Eye Res. 17:33–58, 1998.

    Article  Google Scholar 

  7. Cheng, H. M., K. K. Kwong, J. Xiong, and B. T. Woods. Visualization of water movement in the living rabbit eye. Graefes Arch. Clin. Exp. Ophthalmol. 230:62–65, 1992.

    Article  Google Scholar 

  8. Cussler, E. L. Diffusion: Mass Transfer in Fluid Systems, 2nd ed. New York: Cambridge University Press, 1997.

    Google Scholar 

  9. Dhillon, B., A. Kamal, and C. Leen. Intravitreal sustained-release ganciclovir implantation to control cytomegalovirus retinitis in AIDS. Int. J. STD AIDS 9:227–230, 1998.

    Article  Google Scholar 

  10. Duvvuri, S., S. Majumdar, and A. K. Mitra. Drug delivery to the retina: Challenges and opportunities. Expert Opin. Biol. Ther. 3:45–56, 2003.

    Article  Google Scholar 

  11. Enyedi, L. B., P. A. Pearson, P. Ashton, and G. J. Jaffe. An intravitreal device providing sustained release of cyclosporine and dexamethasone. Curr. Eye Res. 15:549–557, 1996.

    Google Scholar 

  12. Fatt, I. Flow and diffusion in the vitreous body of the eye. Bull. Math. Biol. 37:85–90, 1975.

    MATH  Google Scholar 

  13. Friedrich, S., Y. L. Cheng, and B. Saville. Finite element modeling of drug distribution in the vitreous humor of the rabbit eye. Ann. Biomed. Eng. 25–303–314, 1997.

    Google Scholar 

  14. Funk, R. H., J. Gehr, and J. W. Rohen. Short-term hemodynamic changes in episcleral arteriovenous anastomoses correlate with venous pressure and IOP changes in the albino rabbit. Curr. Eye Res. 15:87–93, 1996.

    Google Scholar 

  15. Gaul, G. R., and R. F. Brubaker. Measurement of aqueous flow in rabbits with corneal and vitreous depots of fluorescent dye. Invest. Ophthalmol. Vis. Sci. 27:1331–1335, 1986.

    Google Scholar 

  16. Geroski, D. H., and H. F. Edelhauser. Drug delivery for posterior segment eye disease. Invest. Ophthalmol. Vis. Sci. 41:961–964, 2000.

    Google Scholar 

  17. Gomori, J. M., R. I. Grossman, J. A. Shields, J. J. Augsburger, P. M. Joseph, and D. DeSimeone. Ocular MR imaging and spectroscopy: An ex vivo study. Radiology, 160:201–205, 1986.

    Google Scholar 

  18. Gordon, M. J., K. C. Chu, A. Margaritis, A. J. Martin, C. R. Ethier, and B. K. Rutt. Measurement of Gd-DTPA diffusion through PVA hydrogel using a novel magnetic resonance imaging method. Biotechnol. Bioeng. 65:459–467, 1999.

    Article  Google Scholar 

  19. Huang, X., and C. S. Brazel. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J. Control Release,73:121–136, 2001.

    Article  Google Scholar 

  20. Hughes, A. A schematic eye for the rabbit. Vision Res. 12:123–138, 1972.

    Article  Google Scholar 

  21. Jonas, J. B., I. Kreissig, A. Sofker, and R. F. Degenring. Intravitreal injection of triamcinolone for diffuse diabetic macular edema. Arch. Ophthalmol. 121:57–61, 2003.

    Article  Google Scholar 

  22. Kolodny, N. H., T. F. Freddo, B. A. Lawrence, C. Suarez, and S. P. Bartels. Contrast-enhanced magnetic resonance imaging confirmation of an anterior protein pathway in normal rabbit eyes. Invest. Ophthalmol. Vis. Sci. 37:1602–1607, 1996.

    Google Scholar 

  23. Kolodny, N. H., S. T. Goode, W. Ryan, and T. F. Freddo. Evaluation of therapeutic effectiveness using MR imaging in a rabbit model of anterior uveitis. Exp. Eye Res. 74:483–491, 2002.

    Article  Google Scholar 

  24. Lim, J. I., R. A. Wolitz, A. H. Dowling, H. R. Bloom, A. R. Irvine, and D. M. Schwartz. Visual and anatomic outcomes associated with posterior segment complications after ganciclovir implant procedures in patients with AIDS and cytomegalovirus retinitis. Am. J. Ophthalmol. 127:288–293, 1999.

    Article  Google Scholar 

  25. Lizak, M. J., M. B. Datiles, A. H. Aletras, P. F. Kador, and R. S. Balaban. MRI of the human eye using magnetization transfer contrast enhancement. Invest. Ophthalmol. Vis. Sci. 41:3878–3881, 2000.

    Google Scholar 

  26. Macha, S., and A. K. Mitra. Ocular pharmacokinetics in rabbits using a novel dual probe microdyalysis technique. Exp. Eye Res. 72:289–299, 2001.

    Article  Google Scholar 

  27. Maurice, D. M. Flow of water between aqueous and vitreous compartments in the rabbit eye. Am. J. Physiol. 252:F104–F108, 1987.

    Google Scholar 

  28. Missel, P. J. Hydraulic flow and vascular clearance influences on intravitreal drug delivery. Pharm. Res. 19:1636–1647, 2002.

    Article  Google Scholar 

  29. Missel, P. J. Finite and infinitesimal representation of vasculature: Ocular drug clearance by vascular and hydraulic effects. Ann. Biomed. Eng. 30:1128–1134, 2002.

    Article  Google Scholar 

  30. Ohtori, A., and K. Tojo. In vivo/in vitro correlation of intravitreal delivery of drugs with the help of computer simulation. Biol. Pharm. Bull. 17:283–290, 1994, 1994.

    Google Scholar 

  31. Okabe, J., H. Kimura, N. Kunou, K. Okabe, A. Kato, and Y. Ogura. Biodegradable intrascleral implant for sustained intraocular delivery of betamethasone phosphate. Invest. Ophthalmol. Vis. Sci. 44:740–744, 2003.

    Article  Google Scholar 

  32. Pflugfelder, S. C., E. Hernandez, S. J. Fliesler, J. Alvarez, M. E. Pflugfelder, and R. K. Forster. Intravitreal vancomycin. Retinal toxicity, clearance, and interaction with gentamicin. Arch. Ophthalmol. 105:831–837, 1987.

    Google Scholar 

  33. Rainer G., R. Menapace, O. Findl, B. Kiss, V. Petternel, M. Georgopoulos, and B. Schneider. Intraocular pressure rise small incision cataract surgery: Randomized intra-individual comparison of two dispersive viscoelastic agents. Br. J. Ophthalmol. 85(2):139–142, 2001.

    Article  Google Scholar 

  34. Robinson, M. R., J. Baffi, P. Yuan, C. Sung, G. Byrnes, T. A. Cox, and K. G. Csaky. Safety and pharmacokinetics of intravitreal 2-methoxyestradiol implants in normal rabbit and pharmacodynamics in a rat model of choroidal neovascularization. Exp. Eye Res. 74:309–317, 2002.

    Article  Google Scholar 

  35. Sen, H. A., B. A. Berkowitz, N. Ando, and E. de Juan Jr. In vivo imaging of breakdown of the inner and outer blood-retinal barriers. Invest. Ophthalmol. Vis. Sci. 33:3507–3512, 1992.

    Google Scholar 

  36. Shane, T. S., and D. F. Martin. Endophthalmitis after ganciclovir implant in patients with AIDS and cytomegalovirus retinitis. Am. J. Ophthalmol. 136:649–654, 2003.

    Article  Google Scholar 

  37. Stay, M. S., J. Xu, T. W. Randolph, and V. H. Barocas. Computer simulation of convective and diffusive transport of controlled-release drugs in the vitreous humor. Pharm. Res. 20:96–102, 2003, 2003.

    Article  Google Scholar 

  38. Thelwall, P. E., A. A. Neves, and K. M. Brindle. Measurement of bioreactor perfusion using dynamic contrast agent-enhanced magnetic resonance imaging. Biotechnol. Bioeng. 75:682–690, 2001.

    Article  Google Scholar 

  39. Tojo, K., and A. Isowaki. Pharmacokinetic model for in vivo/in vitro correlation of intravitreal drug delivery.Adv. Drug Deliv. Rev. 52:17–24, 2001 .

    Article  Google Scholar 

  40. Tojo, K. J., and A. Ohtori. Pharmacokinetic model of intravitreal drug injection. Math. Biosci. 123:59–75, 1994.

    Article  MATH  Google Scholar 

  41. Tojo, K., K. Nakagawa, Y. Morita, and A. Ohtori. A pharmacokinetic model of intravitreal delivery of ganciclovir. Eur. J. Pharm. Biopharm. 47:99–104, 1999.

    Article  Google Scholar 

  42. Velez, G., and S. M. Whitcup. New developments in sustained release drug delivery for the treatment of intraocular disease. Br. J. Ophthalmol. 83:1225–1229, 1999.

    Article  Google Scholar 

  43. Xu, J., J. J. Heys, V. H. Barocas, and T. W. Randolph. Permeability and diffusion in vitreous humor: Implications for drug delivery. Pharm. Res. 17:664–669, 2000.

    Article  Google Scholar 

  44. Yamamoto, N., T. Wakabayashi, K. Murakami, and S. Hommura. Detection of CMV DNA in the aqueous humor of AIDS patients with CMV retinitis by AMPLICOR CMV test. Ophthalmologica,217:45–48, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Lutz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., Lizak, M.J., Tansey, G. et al. Study of Ocular Transport of Drugs Released from an Intravitreal Implant Using Magnetic Resonance Imaging. Ann Biomed Eng 33, 150–164 (2005). https://doi.org/10.1007/s10439-005-8974-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-8974-7

Keywords

Navigation