Skip to main content
Log in

Fluid Shear Stress Modulates Cell Migration Induced by Sphingosine 1-Phosphate and Vascular Endothelial Growth Factor

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The rational design of drug delivery systems requires the ability to predict the environment-specific responses of target cells to the delivered drug. Here we describe the in vitro effects of fluid shear stress, vascular endothelial growth factor (VEGF), and sphingosine 1-phosphate (S1P) on the migration of human umbilical vein endothelial cells (HUVEC). Endothelial cell migration into a scrape wound was enhanced in S1P- or VEGF-stimulated HUVEC by the addition of fluid shear stress. In both cases, scrape wound closure rates were near a maximal value that was not exceeded when cells were exposed to all three factors. We also found that cell migration into a scrape wound due to S1P stimulation was correlated with the S1P1 mRNA concentration, in systems where cell migration was not already near maximal. The present work represents our initial steps toward predicting cell migration based upon the activation state of the receptors and enzymes involved in the chemokinetic response. These results also illustrate the importance of context-dependent analysis of cell signaling cascades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albuquerque, M. L., C. M. Waters, U. Savla, H. W. Schnaper, and A. S. Flozak. Shear stress enhances human endothelial cell wound closure in vitro. Am. J. Physiol. Heart Circ. Physiol. 279:H293–H302, 2000.

    PubMed  Google Scholar 

  2. Baum, O., L. Da Silva-Azevedo, G. Willerding, A. Wockel, G. Planitzer, R. Gossrau, A. R. Pries, and A. Zakrzewicz. Endothelial NOS is main mediator for shear stress-dependent angiogenesis in skeletal muscle after prazosin administration. Am. J. Physiol. Heart Circ. Physiol. 287:H2300–H2308, 2004.

    Article  PubMed  Google Scholar 

  3. Bayless, K. J., and G. E. Davis. Sphingosine-1-phosphate markedly induces matrix metalloproteinase and integrin-dependent human endothelial cell invasion and lumen formation in three-dimensional collagen and fibrin matrices. Biochem. Biophys. Res. Commun. 312:903–913, 2003.

    Article  PubMed  Google Scholar 

  4. Borges, E., Y. Jan, and E. Ruoslahti. Platelet-derived growth factor receptor beta and vascular endothelial growth factor receptor 2 bind to the beta 3 integrin through its extracellular domain. J. Biol. Chem. 275:39867–39873, 2000.

    Article  PubMed  Google Scholar 

  5. Byzova, T. V., C. K. Goldman, N. Pampori, K. A. Thomas, A. Bett, S. J. Shattil, and E. F. Plow. A mechanism for modulation of cellular responses to VEGF: Activation of the integrins. Mol. Cell 6:851–860, 2000.

    PubMed  Google Scholar 

  6. Callow, A. D., E. T. Choi, J. D. Trachtenberg, S. L. Stevens, D. T. Connolly, C. Rodi, and U. S. Ryan. Vascular permeability factor accelerates endothelial regrowth following balloon angioplasty. Growth Factors 10:223–228, 1994.

    PubMed  Google Scholar 

  7. Claesson-Welsh, L. Signal transduction by vascular endothelial growth factor receptors. Biochem. Soc. Trans. 31:20–24, 2003.

    PubMed  Google Scholar 

  8. Davies, P. F., A. Remuzzi, E. J. Gordon, C. F. Dewey, Jr., and M. A. Gimbrone, Jr. Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc. Natl. Acad. Sci. U.S.A. 83:2114–2117, 1986.

    PubMed  Google Scholar 

  9. Diamond, S. L., S. G. Eskin, and L. V. McIntire. Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells. Science 243:1483–1485, 1989.

    PubMed  Google Scholar 

  10. Dimmeler, S., E. Dernbach, and A. M. Zeiher. Phosphorylation of the endothelial nitric oxide synthase at ser-1177 is required for VEGF-induced endothelial cell migration. FEBS Lett. 477:258–262, 2000.

    Article  PubMed  Google Scholar 

  11. Dixit, P., D. Hern-Anderson, J. Ranieri, and C. E. Schmidt. Vascular graft endothelialization: Comparative analysis of canine and human endothelial cell migration on natural biomaterials. J. Biomed. Mater. Res. 56:545–555, 2001.

    Article  PubMed  Google Scholar 

  12. Eichholtz, T., K. Jalink, I. Fahrenfort, and W. H. Moolenaar. The bioactive phospholipid lysophosphatidic acid is released from activated platelets. Biochem. J. 291 (3):677–680, 1993.

    PubMed  Google Scholar 

  13. Elbert, D. L., and J. A. Hubbell. Conjugate addition reactions combined with free-radical cross-linking for the design of materials for tissue engineering. Biomacromolecules 2:430–441, 2001.

    Article  PubMed  Google Scholar 

  14. Endo, A., K. Nagashima, H. Kurose, S. Mochizuki, M. Matsuda, and N. Mochizuki. Sphingosine 1-phosphate induces membrane ruffling and increases motility of human umbilical vein endothelial cells via vascular endothelial growth factor receptor and CrkII. J. Biol. Chem. 277:23747–23754, 2002.

    Article  PubMed  Google Scholar 

  15. English, D., Z. Welch, A. T. Kovala, K. Harvey, O. V. Volpert, D. N. Brindley, and J. G. Garcia. Sphingosine 1-phosphate released from platelets during clotting accounts for the potent endothelial cell chemotactic activity of blood serum and provides a novel link between hemostasis and angiogenesis. FASEB J. 14:2255–2265, 2000.

    Article  PubMed  Google Scholar 

  16. Frangos, J. A., L. V. McIntire, and S. G. Eskin. Shear stress induced stimulation of mammalian cell metabolism. Biotechnol. Bioeng. 32:1053–1060, 1988.

    Article  Google Scholar 

  17. Garcia-Cardena, G., J. Comander, K. R. Anderson, B. R. Blackman, and M. A. Gimbrone, Jr. Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc. Natl. Acad. Sci. U.S.A. 98:4478–4485, 2001.

    Article  PubMed  Google Scholar 

  18. Gliki, G., C. Wheeler-Jones, and I. Zachary. Vascular endothelial growth factor induces protein kinase C (PKC)-dependent Akt/PKB activation and phosphatidylinositol 3′-kinase-mediates PKC delta phosphorylation: Role of PKC in angiogenesis. Cell Biol. Int. 26:751–759, 2002.

    Article  PubMed  Google Scholar 

  19. Gudi, S. R., C. B. Clark, and J. A. Frangos. Fluid flow rapidly activates G proteins in human endothelial cells. Involvement of G proteins in mechanochemical signal transduction. Circ. Res. 79:834–839, 1996.

    PubMed  Google Scholar 

  20. Igarashi, J., P. A. Erwin, A. P. Dantas, H. Chen, and T. Michel. VEGF induces S1P1 receptors in endothelial cells: Implications for cross-talk between sphingolipid and growth factor receptors. Proc. Natl. Acad. Sci. U.S.A. 100:10664–10669, 2003.

    Article  PubMed  Google Scholar 

  21. Jin, Z. G., H. Ueba, T. Tanimoto, A. O. Lungu, M. D. Frame, and B. C. Berk. Ligand- independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase. Circ. Res. 93:354–363, 2003.

    Article  PubMed  Google Scholar 

  22. Kwon, Y. G., J. K. Min, K. M. Kim, D. J. Lee, T. R. Billiar, and Y. M. Kim. Sphingosine 1-phosphate protects human umbilical vein endothelial cells from serum-deprived apoptosis by nitric oxide production. J. Biol. Chem. 276:10627–10633, 2001.

    Article  PubMed  Google Scholar 

  23. Lee, H., E. J. Goetzl, and S. An. Lysophosphatidic acid and sphingosine 1-phosphate stimulate endothelial cell wound healing. Am. J. Physiol. Cell Physiol. 278:C612–C618, 2000.

    PubMed  Google Scholar 

  24. Lee, M. J., J. R. Van Brocklyn, S. Thangada, C. H. Liu, A. R. Hand, R. Menzeleev, S. Spiegel, and T. Hla. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279:1552–1555, 1998.

    Article  PubMed  Google Scholar 

  25. Lee, M. J., S. Thangada, J. H. Paik, G. P. Sapkota, N. Ancellin, S. S. Chae, M. Wu, M. Morales-Ruiz, W. C. Sessa, D. R. Alessi, and T. Hla. Akt-mediated phosphorylation of the G protein-coupled receptor EDG-1 is required for endothelial cell chemotaxis. Mol. Cell 8:693–704, 2001.

    Article  PubMed  Google Scholar 

  26. Lee, O. H., Y. M. Kim, Y. M. Lee, E. J. Moon, D. J. Lee, J. H. Kim, K. W. Kim, and Y. G. Kwon. Sphingosine 1-phosphate induces angiogenesis: Its angiogenic action and signaling mechanism in human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun. 264:743–750, 1999.

    Article  PubMed  Google Scholar 

  27. Lindner, V., and M. A. Reidy. Expression of VEGF receptors in arteries after endothelial injury and lack of increased endothelial regrowth in response to VEGF. Arterioscler. Thromb. Vasc. Biol. 16:1399–1405, 1996.

    PubMed  Google Scholar 

  28. Liu, F., A. D. Verin, P. Wang, R. Day, R. P. Wersto, F. J. Chrest, D. K. English, and J. G. Garcia. Differential regulation of sphingosine-1-phosphate- and VEGF-induced endothelial cell chemotaxis. Involvement of G(ialpha2)-linked Rho kinase activity. Am. J. Respir. Cell Mol. Biol. 24:711–719, 2001.

    PubMed  Google Scholar 

  29. Liu, Y., R. Wada, T. Yamashita, Y. Mi, C. X. Deng, J. P. Hobson, H. M. Rosenfeldt, V. E. Nava, S. S. Chae, M. J. Lee, C. H. Liu, T. Hla, S. Spiegel, and R. L. Proia. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J. Clin. Invest. 106:951–961, 2000.

    PubMed  Google Scholar 

  30. McVerry, B. J., and J. G. Garcia. Endothelial cell barrier regulation by sphingosine 1-phosphate. J. Cell. Biochem. 92:1075–1085, 2004.

    Article  PubMed  Google Scholar 

  31. Murata, N., K. Sato, J. Kon, H. Tomura, M. Yanagita, A. Kuwabara, M. Ui, and F. Okajima. Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. Biochem. J. 352(Pt 3):809–815, 2000.

    Article  PubMed  Google Scholar 

  32. Nomura, H., C. Ishikawa, T. Komatsuda, J. Ando, and A. Kamiya. A disk-type apparatus for applying fluid shear stress on cultured endothelial cell. Biorheology 25:461–470, 1988.

    PubMed  Google Scholar 

  33. Okamoto, H., N. Takuwa, K. Gonda, H. Okazaki, K. Chang, Y. Yatomi, H. Shigematsu, and Y. Takuwa. EDG1 is a functional sphingosine-1-phosphate receptor that is linked via a Gi/o to multiple signaling pathways, including phospholipase C activation, Ca2+ mobilization, Ras-mitogen-activated protein kinase activation, and adenylate cyclase inhibition. J. Biol. Chem. 273:27104–27110, 1998.

    Article  PubMed  Google Scholar 

  34. Paik, J. H., S. Chae, M. J. Lee, S. Thangada, and T. Hla. Sphingosine 1-phosphate- induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and Rho-dependent activation of alpha vbeta3- and beta 1-containing integrins. J. Biol. Chem. 276:11830–11837, 2001.

    Article  PubMed  Google Scholar 

  35. Pintucci, G., S. Froum, J. Pinnell, P. Mignatti, S. Rafii, and D. Green. Trophic effects of platelets on cultured endothelial cells are mediated by platelet-associated fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor (VEGF). Thromb. Haemost. 88:834–842, 2002.

    PubMed  Google Scholar 

  36. Richardson, T. P., M. C. Peters, A. B. Ennett, and D. J. Mooney. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19:1029–1034, 2001.

    Article  PubMed  Google Scholar 

  37. Swanson, N., K. Hogrefe, Q. Javed, N. Malik, and A. H. Gershlick. Vascular endothelial growth factor (VEGF)-eluting stents: In vivo effects on thrombosis, endothelialization and intimal hyperplasia. J. Invasive Cardiol. 15:688–692, 2003.

    PubMed  Google Scholar 

  38. Takada, Y., C. Kato, S. Kondo, R. Korenaga, and J. Ando. Cloning of cDNAs encoding G protein-coupled receptor expressed in human endothelial cells exposed to fluid shear stress. Biochem. Biophys. Res. Commun. 240:737–741, 1997.

    Article  PubMed  Google Scholar 

  39. Tanimoto, T., Z. G. Jin, and B. C. Berk. Transactivation of vascular endothelial growth factor (VEGF) receptor Flk-1/KDR is involved in sphingosine 1-phosphate-stimulated phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS). J. Biol. Chem. 277:42997–43001, 2002.

    Article  PubMed  Google Scholar 

  40. Tolkovsky, A. M., and A. Levitzki. Mode of coupling between the beta-adrenergic receptor and adenylate cyclase in turkey erythrocytes. Biochemistry 17:3795, 1978.

    Article  PubMed  Google Scholar 

  41. Tolkovsky, A. M., S. Braun, and A. Levitzki. Kinetics of interaction between beta-receptors, GTP protein, and the catalytic unit of turkey erythrocyte adenylate cyclase. Proc. Natl. Acad. Sci. U.S.A. 79:213–217, 1982.

    PubMed  Google Scholar 

  42. Traub, O., B. P. Monia, N. M. Dean, and B. C. Berk. PKC-epsilon is required for mechano-sensitive activation of ERKl/2 in endothelial cells. J. Biol. Chem. 272:31251–31257, 1997.

    Article  PubMed  Google Scholar 

  43. Tzima, E., M. A. del Pozo, S. J. Shattil, S. Chien, and M. A. Schwartz. Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO J. 20:4639-4647, 2001.

    Article  PubMed  Google Scholar 

  44. Tzima, E., M. A. Del Pozo, W. B. Kiosses, S. A. Mohamed, S. Li, S. Chien, and M. A. Schwartz. Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression. EMBO J. 21:6791–6800, 2002.

    Article  PubMed  Google Scholar 

  45. Windh, R. T., M.-J. Lee, T. Hla, S. An, A. J. Barr, and D. R. Manning. Differential coupling of the sphingosine 1-phosphate receptors Edg-1, Edg-3, and H218/Edg-5 to the Gi, Gq, and G12 families of heterotrimeric G proteins. J. Biol. Chem. 274:27351–27358, 1999.

    Article  PubMed  Google Scholar 

  46. Zeng, H., S. Sanyal, and D. Mukhopadhyay. Tyrosine residues 951 and 1059 of vascular endothelial growth factor receptor-2 (KDR) are essential for vascular permeability factor/vascular endothelial growth factor-induced endothelium migration and proliferation, respectively. J. Biol. Chem. 276:32714–32719, 2001.

    Article  PubMed  Google Scholar 

  47. Zeng, H., D. Zhao, and D. Mukhopadhyay. KDR stimulates endothelial cell migration through heterotrimeric G protein Gq/11-mediated activation of a small GTPase RhoA. J. Biol. Chem. 277:46791–46798, 2002.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald L. Elbert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, S.K., Wacker, B.K., Kaneda, M.M. et al. Fluid Shear Stress Modulates Cell Migration Induced by Sphingosine 1-Phosphate and Vascular Endothelial Growth Factor. Ann Biomed Eng 33, 1003–1014 (2005). https://doi.org/10.1007/s10439-005-5756-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-5756-1

Keywords

Navigation