Skip to main content
Log in

Flow structures and unsteadiness in hypersonic shock wave/turbulent boundary layer interaction subject to steady jet

基于稳态射流控制的高超声速激波/湍流边界层干扰流动结构与非 定常性研究

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Direct numerical simulations of Mach 6 hypersonic flow over a 34° compression corner subject to steady jet are conducted. Distributions of skin friction coefficient, wall pressure, mean velocity and temperature, boundary layer thickness and Stanton number demonstrate that the flow changes dramatically in the shock wave/turbulent boundary layer interaction area. It is found that the steady jet has no effect on suppressing flow separation unexpectedly, but increases its spatial scale instead. Instantaneous flow structures show that the turbulence amplification can be observed after the application of flow control, and abundant Gortler-like vorticities appear, but the strength of the main shock decreases. Analyzing the wall fluctuating pressure signals using weighted power spectral density, we found an interesting thing. That is, although the low-frequency oscillation phenomenon induced by separation shock is suppressed by the steady jet, wall fluctuating pressure beneath the jet shock is oscillating at a frequency lower than 0.1u/δref. Results of coherent and intermittency factor reveal that it is related to the backand- forth movement of the jet shock itself.

摘要

对稳态射流作用下马赫6高超声速压缩拐角激波/湍流边界层干扰流动开展了直接数值模拟研究. 表面摩阻系数、壁面压力、 平均速度和温度、边界层厚度和斯坦顿数的分布等结果表明, 激波/湍流边界层相互作用区的流动发生了显著变化. 研究发现, 垂直壁 面的稳定射流对抑制流动分离没有任何作用, 反而增加了其空间尺度. 瞬时流动结构表明, 在施加流动控制后, 可以观察到湍流增强效 应, 并出现大量的类Görtler涡结构, 但主激波强度降低. 使用加权功率谱密度分析壁面脉动压力信号, 我们发现了一件有趣的事情: 尽管 稳定射流抑制了分离激波引起的低频振荡现象, 但射流激波附近的壁面脉动压力以低于0.1u/δref的频率振荡. 相干性和间歇性因子的 结果表明, 这与射流激波本身的往复运动有关.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. S. Dolling, Fifty years of shock-wave/boundary-layer interaction research: What next? AIAA J. 39, 1517 (2001).

    Article  CAS  ADS  Google Scholar 

  2. G. Tu, J. Chen, X. Yuan, Q. Yang, M. Duan, Q. Yang, Y. Duan, X. Chen, B. Wan, and X. Xiang, Progress in flight tests of hypersonic boundary layer transition, Acta Mech. Sin. 37, 1589 (2021).

    Article  ADS  Google Scholar 

  3. Q. Liu, Z. Luo, X. Deng, Y. Zhou, L. Wang, and P. Cheng, Vortical structures and density fluctuations analysis of supersonic forward-facing step controlled by self-sustaining dual synthetic jets, Acta Mech. Sin. 36, 1215 (2020).

  4. S. Piponniau, J. P. Dussauge, J. F. Debiève, and P. Dupont, A simple model for low-frequency unsteadiness in shock-induced separation, J. Fluid Mech. 629, 87 (2009).

    Article  ADS  Google Scholar 

  5. S. Pirozzoli, and F. Grasso, Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M = 2.25, Phys. Fluids 18, 065113 (2006).

    Article  ADS  Google Scholar 

  6. Z. Wang, J. Chang, W. Hou, and D. Yu, Low-frequency unsteadiness of shock-wave/boundary-layer interaction in an isolator with background waves, Phys. Fluids 32, 056105 (2020).

    Article  CAS  ADS  Google Scholar 

  7. S. Hickel, and B. van Oudheusden, Influence of upstream disturbances on the primary and secondary instabilities in a supersonic separated flow over a backward-facing step, Phys. Fluids 32, 056102 (2020).

    Article  Google Scholar 

  8. N. T. Clemens, and V. Narayanaswamy, Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions, Annu. Rev. Fluid Mech. 46, 469 (2014).

    Article  MathSciNet  ADS  Google Scholar 

  9. X. H. Fan, Z. G. Tang, G. Wang, and Y. G. Yang, Review of low frequency unsteadiness in shock wave/turbulent boundary layer interaction (in Chinese), Acta Aeronaut. Astronaut. Sin. 43, 625917 (2022).

    Google Scholar 

  10. L. Vanstone, and N. T. Clemens, Proper orthogonal decomposition analysis of swept-ramp shock-wave/boundary-layer unsteadiness at Mach 2, AIAA J. 57, 3395 (2019).

    Article  CAS  ADS  Google Scholar 

  11. R. A. Humble, G. E. Elsinga, F. Scarano, and B. W. van Oudheusden, Three-dimensional instantaneous structure of a shock wave/turbulent boundary layer interaction, J. Fluid Mech. 622, 33 (2009).

    Article  ADS  Google Scholar 

  12. Y. Zhuang, H. Tan, X. Li, F. Sheng, and Y. Zhang, Letter: Görtler-like vortices in an impinging shock wave/turbulent boundary layer interaction flow, Phys. Fluids 30, 061702 (2018).

    Article  ADS  Google Scholar 

  13. W. Wu, C. Meneveau, and R. Mittal, Spatio-temporal dynamics of turbulent separation bubbles, J. Fluid Mech. 883, A45 (2020).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  14. K. M. Porter, and J. Poggie, Selective upstream influence on the unsteadiness of a separated turbulent compression ramp flow, Phys. Fluids 31, 016104 (2019).

    Article  ADS  Google Scholar 

  15. M. P. Martin, S. Priebe, and C. M. Helm, Upstream and downstream influence on STBLI instability, AIAA Paper No. 2016-3341, 2016.

    Google Scholar 

  16. F. Tong, S. Dong, J. Duan, X. Yuan, and X. Li, Effect of expansion on the wall heat flux in a supersonic turbulent boundary layer, Phys. Fluids 34, 105109 (2022).

    Article  CAS  ADS  Google Scholar 

  17. F. Tong, S. Dong, J. Lai, X. Yuan, and X. Li, Wall shear stress and wall heat flux in a supersonic turbulent boundary layer, Phys. Fluids 34, 015127 (2022).

    Article  CAS  ADS  Google Scholar 

  18. F. Tong, X. Yuan, J. Lai, J. Duan, D. Sun, and S. Dong, Wall heat flux in a supersonic shock wave/turbulent boundary layer interaction, Phys. Fluids 34, 065104 (2022).

    Article  CAS  ADS  Google Scholar 

  19. B. Wang, W. D. Liu, Y. X. Zhao, X. Q. Fan, and C. Wang, Experimental investigation of the micro-ramp based shock wave and turbulent boundary layer interaction control, Phys. Fluids 24, 055110 (2012).

    Article  Google Scholar 

  20. M. Tang, Y. Wu, H. Zong, S. Guo, H. Liang, and Y. Luo, Experimental investigation on compression ramp shock wave/boundary layer interaction control using plasma actuator array, Phys. Fluids 33, 066101 (2021).

    Article  CAS  ADS  Google Scholar 

  21. L. Feng, H. Wang, Z. Chen, Y. Zhou, and Y. Yang, Unsteadiness characterization of shock wave/turbulent boundary layer interaction controlled by high-frequency arc plasma energy deposition, Phys. Fluids 33, 015114 (2021).

    Article  CAS  ADS  Google Scholar 

  22. X. Geng, W. Zhang, Z. Shi, Z. Li, Q. Sun, and Z. Sun, Experimental study on frequency characteristics of the actuations produced by plasma synthetic jet actuator and its geometric effects, Phys. Fluids 33, 067113 (2021).

    Article  CAS  ADS  Google Scholar 

  23. E. Touber, and N. D. Sandham, Low-order stochastic modelling of low-frequency motions in reflected shock-wave/boundary-layer interactions, J. Fluid Mech. 671, 417 (2011).

    Article  ADS  Google Scholar 

  24. V. Narayanaswamy, L. L. Raja, and N. T. Clemens, Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator, Phys. Fluids 24, 076101 (2012).

    Article  ADS  Google Scholar 

  25. M. Y. Ali, F. Alvi, C. Manisankar, S. Verma, and L. Venkatakrishnan, in Studies on the control of shock wave-boundary layer interaction using steady microactuators: Proceedings of 41st AIAA Fluid Dynamics Conference and Exhibit, Honolulu, 2011.

    Book  Google Scholar 

  26. S. B. Verma, and C. Manisankar, Control of compression-ramp-induced interaction with steady microjets, AIAA J. 57, 2892 (2019).

    Article  CAS  ADS  Google Scholar 

  27. B. Ganapathisubramani, N. T. Clemens, and D. S. Dolling, Low-frequency dynamics of shock-induced separation in a compression ramp interaction, J. Fluid Mech. 636, 397 (2009).

    Article  ADS  Google Scholar 

  28. J. Liu, and J. Luo, Effect of disturbances at inlet on hypersonic boundary layer transition on a blunt cone at small angle of attack, Appl. Math. Mech.-Engl. Ed. 31, 535 (2010).

    Article  MathSciNet  Google Scholar 

  29. X. L. Li, D. X. Fu, Y. W. Ma, and X. Liang, Direct numerical simulation of compressible turbulent flows, Acta Mech. Sin. 26, 795 (2010).

    Article  ADS  Google Scholar 

  30. R. Hu, X. Li, and C. Yu, Transfers of energy and helicity in helical rotating turbulence, J. Fluid Mech. 946, A19 (2022).

    Article  MathSciNet  CAS  Google Scholar 

  31. Q. Liu, Z. Luo, G. Tu, X. Deng, P. Cheng, and P. Zhang, Direct numerical simulations of a supersonic turbulent boundary layer subject to velocity-temperature coupled control, Phys. Rev. Fluids 6, 044603 (2021).

    Article  ADS  Google Scholar 

  32. S. Dong, F. Tong, M. Yu, J. Chen, X. Yuan, and Q. Wang, Positive and negative pairs of fluctuating wall shear stress and heat flux in supersonic turbulent boundary layers, Phys. Fluids 34, 085115 (2022).

    Article  CAS  ADS  Google Scholar 

  33. L. Duan, I. Beekman, and M. P. Martín, Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature, J. Fluid Mech. 655, 419 (2010).

    Article  ADS  Google Scholar 

  34. P. Schlatter, and R. Örlü, Assessment of direct numerical simulation data of turbulent boundary layers, J. Fluid Mech. 659, 116 (2010).

    Article  ADS  Google Scholar 

  35. M. V. Morkovin, Effects of compressibility on turbulent flows, in: In Mecanique de la Turbulence, edited by A. Favre, (CNRS, Paris, 1962), pp. 367–380.

    Google Scholar 

  36. F. M. White, Viscous Fluid Flow (McGraw-Hill, New York, 1974).

    Google Scholar 

  37. H. Qi, X. Li, X. Ji, F. Tong, and C. Yu, Large-eddy simulation of a hypersonic turbulent boundary layer over a compression corner, AIP Adv. 13, 025265 (2023).

    Article  ADS  Google Scholar 

  38. M. Wu, and M. P. Martin, Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp, AIAA J. 45, 879 (2007).

    Article  ADS  Google Scholar 

  39. J. Jeong, and F. Hussain, On the identification of a vortex, J. Fluid. Mech. 285, 69 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  40. I. Tani, Production of longitudinal vortices in the boundary layer along a concave wall, J. Geophys. Res. 67, 3075 (1962).

    Article  ADS  Google Scholar 

  41. M. Wu, and M. P. Martín, Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data, J. Fluid Mech. 594, 71 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12202488 and 12002377), the Natural Science Program of National University of Defense Technology (Grant No. ZK22-30), and Independent Cultivation Project for Young Talents in College of Aerospace Science and Engineering. Supercomputer time provided by the National Supercomputing Center in Beijing is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Qiang Liu: Data curation, Formal analysis, Funding acquisition, Investigation, Resources, Methodology, Visualization, Writing — original draft. Wei Xie: Data curation, Visualization, Validation, Methodology. Zhenbing Luo: Conceptualization, Writing — review & editing, Resources. Mingbo Sun: Writing — review & editing, Resources, Software. Pan Cheng: Project administration, Writing — review & editing. Xiong Deng: Writing — review & editing, Resources, Methodology. Yan Zhou: Writing — review & editing, Funding acquisition.

Corresponding author

Correspondence to Zhenbing Luo  (罗振兵).

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Xie, W., Luo, Z. et al. Flow structures and unsteadiness in hypersonic shock wave/turbulent boundary layer interaction subject to steady jet. Acta Mech. Sin. 39, 123202 (2023). https://doi.org/10.1007/s10409-023-23202-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23202-x

Navigation