Skip to main content
Log in

Numerical simulation of turbulent flow in FlowCube platform under a strong magnetic field

强磁场下FlowCube中湍流流动的数值模拟

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The investigation of magnetohydrodynamic (MHD) flow has been carried out through a two-dimensional approximation known as the PSM model within the FlowCube platform (Pothérat and Klein, 2014). The platform itself is a cubic vessel featuring alternating positive and negative electrodes that are uniformly located on its bottom. The flow is driven by the Lorentz force, which is induced by injected currents and imposed magnetic fields. The energy spectrum of two-dimensional flow agrees well with our three-dimensional one, confirming the two-dimensionality of MHD turbulence under strong magnetic fields. For quasi-two-dimensional (Q2D) flow in FlowCube, the energy spectrum displays ∼ k−3 and ∼ k2 slopes, corresponding to direct enstrophy cascade from forcing scale li to small scale and statistical equilibrium state of large scale (> li), where li is electrodes space in FlowCube. Moreover, a comprehensive study has been conducted on the transition from a laminar state to a turbulent state, revealing various flow states, including periodic, quasi-periodic, and chaotic states. Furthermore, under the same driving force, the periodic network of alternating vortices, which are typical structures in the FlowCube configuration, display different flow states. This observation may correspond to a large-scale intermittency in MHD flows due to the complex interaction between the driving force and dissipation.

摘要

本文借助PSM 模型(Pothérat and Klein, 2014)研究了FlowCube 构型中磁流体动力学(MHD)的准二维(Q2D)流动问题.FlowCube的底壁均匀布置着正负相间的点电极, 内部充满液态金属, 在外加均匀磁场作用下, 通过注入恒定电流驱动流体流动. 计算结果表明: 在强磁场作用下, 准二维流动的能谱与三维计算结果吻合较好, 证实了强磁场下MHD湍流的二维性. 此外, 对于FlowCube中的准二维流动, 能谱图呈现k−3和k2的斜率, 分别对应于从驱动尺度l i 向小尺度的拟涡能级串和大尺度结构(>li)的统计平衡态, 其中l i 是FlowCube中的相邻点电极间距. 随着驱动力的逐渐增加, 我们对流动从层流到湍流状态的转变进行了详细讨论, 揭示了从周期、准周期再到混沌的变化规律. 最后, 在相同的驱动力下, 不同的初始流场将产生不同的流动状态, 这与FlowCube中大尺度结构的间歇性可能是相对应的.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. C. Xi, and X. Minglun, Influence of external magnetic field on the flow field in molten semiconductor of Czochralski crystal growth—A numerical simulation, Acta Mech. Sin. 6, 81 (1990).

    Article  Google Scholar 

  2. S. Smolentsev, Physical background, computations and practical issues of the magnetohydrodynamic pressure drop in a fusion liquid metal blanket, Fluids 6, 110 (2021).

    Article  Google Scholar 

  3. L. Chen, S. Smolentsev, and M. J. Ni, Toward full simulations for a liquid metal blanket: part 2. Computations of MHD flows with volumetric heating for a PbLi blanket prototype at Ha ∼ 104 and Gr ∼ 1012, Nucl. Fusion 62, 026042 (2022).

    Article  Google Scholar 

  4. J. L. Sommeria, and R. Moreau, Why, how, and when, MHD turbulence becomes two-dimensional, J. Fluid Mech. 118, 507 (1982).

    Article  MATH  Google Scholar 

  5. J. Hartmann, Theory of laminar flow of an electrically conductive liquid in a homogeneous magnetic field, Munksgaard (1937).

  6. M. Vernet, M. Pereira, S. Fauve, and C. Gissinger, Turbulence in electromagnetically driven Keplerian flows, J. Fluid Mech. 924, A29 (2021), arXiv: 2109.05813.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Shafee, M. M. Bhatti, T. Muhammad, R. Kumar, N. D. Nam, and H. Babazadeh, Simulation of convective MHD flow with inclusion of hybrid powders, J. Therm. Anal. Calorim. 144, 1013 (2021).

    Article  Google Scholar 

  8. J.-H. Xie, D. Balwada, R. Marino, and F. Feraco, in Direct evidence of an oceanic dual kinetic energy cascade and its seasonality from surface drifters: Proceedings of EGU General Assembly 2022, Vienna, 2022.

  9. X. Tan, and A. P. Showman, Atmospheric circulation of brown dwarfs and directly imaged exoplanets driven by cloud radiative feedback: Effects of rotation, Mon. Not. R. Astron. Soc. 502, 678 (2021), arXiv: 2005.12152.

    Article  Google Scholar 

  10. J. Sommeria, Experimental study of the two-dimensional inverse energy cascade in a square box, J. Fluid Mech. 170, 139 (1986).

    Article  Google Scholar 

  11. L. Chen, A. Pothérat, M. J. Ni, and R. Moreau, Direct numerical simulation of quasi-two-dimensional MHD turbulent shear flows, J. Fluid Mech. 915, A130 (2021), arXiv: 2102.01721.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Pothérat, and R. Klein, Why, how and when MHD turbulence at low becomes three-dimensional, J. Fluid Mech. 761, 168 (2014), arXiv: 1305.7105.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Pothérat, J. Sommeria, and R. Moreau, An effective two-dimensional model for MHD flows with transverse magnetic field, J. Fluid Mech. 424, 75 (2000), arXiv: 2006.15468.

    Article  MATH  Google Scholar 

  14. O. Zikanov, I. Belyaev, Y. Listratov, P. Frick, N. Razuvanov, and V. Sviridov, Mixed convection in pipe and duct flows with strong magnetic fields, Appl. Mech. Rev. 73, 010801 (2021).

    Article  Google Scholar 

  15. S. Murali, W. K. Hussam, and G. J. Sheard, Heat transfer enhancement in quasi-two-dimensional magnetohydrodynamic duct flows using repeated flow-facing wedge-shaped protrusions, Int. J. Heat Mass Transfer 171, 121066 (2021).

    Article  Google Scholar 

  16. C. Mistrangelo, and L. Bühler, Magneto-convective instabilities in horizontal cavities, Phys. Fluids 28, 024104 (2016).

    Article  Google Scholar 

  17. N. Kanaris, X. Albets, D. Grigoriadis, and S. Kassinos, Three-dimensional numerical simulations of magnetohydrodynamic flow around a confined circular cylinder under low, moderate, and strong magnetic fields, Phys. Fluids 25, 074102 (2013).

    Article  Google Scholar 

  18. J. Sommeria, Electrically driven vortices in a strong magnetic field, J. Fluid Mech. 189, 553 (1988).

    Article  Google Scholar 

  19. B. Sreenivasan, and T. Alboussiére, Experimental study of a vortex in a magnetic field, J. Fluid Mech. 464, 287 (2002).

    Article  MATH  Google Scholar 

  20. R. Klein, A. Pothérat, and A. Alferenok, Experiment on a confined electrically driven vortex pair, Phys. Rev. E 79, 016304 (2009).

    Article  Google Scholar 

  21. A. Pont-Vflchez, F. X. Trias, A. Gorobets, and A. Oliva, Direct numerical simulation of backward-facing step flow at and expansion ratio 2, J. Fluid Mech. 863, 341 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  22. G. K. Batchelor, Computation of the energy spectrum in homogeneous two-dimensional turbulence, Phys. Fluids 12, II–233 (1969).

    Article  MATH  Google Scholar 

  23. R. H. Kraichnan, Inertial ranges in two-dimensional turbulence, Phys. Fluids 10, 1417 (1967).

    Article  Google Scholar 

  24. G. Boffetta, and S. Musacchio, Evidence for the double cascade scenario in two-dimensional turbulence, Phys. Rev. E 82, 016307 (2010), arXiv: 1006.4110.

    Article  Google Scholar 

  25. K. Messadek, and R. Moreau, An experimental investigation of MHD quasi-two-dimensional turbulent shear flows, J. Fluid Mech. 456, 137 (2002).

    Article  MATH  Google Scholar 

  26. H. Xia, M. Shats, and G. Falkovich, Spectrally condensed turbulence in thin layers, Phys. Fluids 21, 125101 (2009).

    Article  MATH  Google Scholar 

  27. H. Xia, D. Byrne, G. Falkovich, and M. Shats, Upscale energy transfer in thick turbulent fluid layers, Nat. Phys. 7, 321 (2011).

    Article  Google Scholar 

  28. D. Balwada, J. H. Xie, R. Marino, and F. Feraco, Direct observational evidence of an oceanic dual kinetic energy cascade and its seasonality, Sci. Adv. 8, eabq2566 (2022), arXiv: 2202.08637.

    Article  Google Scholar 

  29. H. Aluie, M. Hecht, and G. K. Vallis, Mapping the energy cascade in the north atlantic ocean: the coarse-graining approach, J. Phys. Oceanography 48, 225 (2018), arXiv: 1710.07963.

    Article  Google Scholar 

  30. S. Rai, M. Hecht, M. Maltrud, and H. Aluie, Scale of oceanic eddy killing by wind from global satellite observations, Sci. Adv. 7, eabf4920 (2021).

    Article  Google Scholar 

  31. B. A. Storer, M. Buzzicotti, H. Khatri, S. M. Griffies, and H. Aluie, Global energy spectrum of the general oceanic circulation, Nat. Commun. 13, 5314 (2022), arXiv: 2208.04859.

    Article  Google Scholar 

  32. A. Leonard, Energy cascade in large-eddy simulations of turbulent fluid flows, Adv. Geophys. 18, 237, (Elsevier, 1975).

  33. G. L. Eyink, Locality of turbulent cascades, Phys. D-Nonlinear Phenom. 207, 91 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  34. M. K. Rivera, H. Aluie, and R. E. Ecke, The direct enstrophy cascade of two-dimensional soap film flows, Phys. Fluids 26, 055105 (2014), arXiv: 1309.4894.

    Article  Google Scholar 

  35. R. H. Kraichnan, Helical turbulence and absolute equilibrium, J. Fluid Mech. 59, 745 (1973).

    Article  MATH  Google Scholar 

  36. V. Dallas, S. Fauve, and A. Alexakis, Statistical equilibria of large scales in dissipative hydrodynamic turbulence, Phys. Rev. Lett. 115, 204501 (2015), arXiv: 1507.01874.

    Article  Google Scholar 

  37. J. B. Gorce, and E. Falcon, Statistical equilibrium of large scales in three-dimensional hydrodynamic turbulence, Phys. Rev. Lett. 129, 054501 (2022), arXiv: 2207.04871.

    Article  Google Scholar 

  38. S. Newhouse, D. Ruelle, and F. Takens, Occurrence of strange Axiom A attractors near quasi periodic flows on Tm, m ≥ 3, Commun. Math. Phys. 64, 35 (1978).

    Article  MATH  Google Scholar 

  39. D. Ruelle, and F. Takens, On the nature of turbulence, Commun. Math. Phys. 20, 167 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  40. J. P. Gollub, and S. V. Benson, Many routes to turbulent convection, J. Fluid Mech. 100, 449 (1980).

    Article  Google Scholar 

  41. D. Molenaar, H. J. H. Clercx, and G. J. F. van Heijst, Transition to Chaos in a confined two-dimensional fluid flow, Phys. Rev. Lett. 95, 104503 (2005).

    Article  Google Scholar 

  42. H. Abarbanel, Analysis of Observed Chaotic Data (Springer Science & Business Media, New York, 2012).

    MATH  Google Scholar 

  43. T. Boeck, D. Krasnov, A. Thess, and O. Zikanov, Large-scale intermittency of liquid-metal channel flow in a magnetic field, Phys. Rev. Lett. 101, 244501 (2008), arXiv: 0811.0912.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52076204 and 51927812), and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Ming-Jiu Ni designed the research. Zhao-Bo Wang and Long Chen wrote the first draft of the manuscript. Zhao-Bo Wang set up the numerical simulation set-up and processed the data. Long Chen helped organize the manuscript. Ming-Jiu Ni and Long Chen revised and edited the final version.

Corresponding author

Correspondence to Long Chen  (陈龙).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZB., Chen, L. & Ni, MJ. Numerical simulation of turbulent flow in FlowCube platform under a strong magnetic field. Acta Mech. Sin. 39, 323143 (2023). https://doi.org/10.1007/s10409-023-23143-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23143-x

Navigation