Skip to main content
Log in

Higher order solution to the Euler buckling threshold for compressible hyperelastic bilayers

可压缩双层结构屈曲临界载荷的高阶渐近解

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This study is concerned with the Euler buckling of a bilayer structure composed of two compressible hyperelastic materials subjected to an axial compression. Within the framework of finite elasticity, an exact bifurcation condition is derived based on the linearized incremental equation by employing the neo-Hookean and the Blatz-Ko models. Focusing on thin bilayers, an asymptotic analysis is carried out to deduce two-term (for the neo-Hookean material) and three-term (for the Blatz-Ko material) solutions for the axial and lateral stretches where global buckling takes place. These explicit formulas illustrate a clear picture of how the material and geometric nonlinearities are combined together to affect the critical buckling load and further unravel that the material nonlinearity and the Poisson’s ratio all appear in the higher order terms. A detailed parametric study is performed to elucidate the effect of the material and geometrical parameters on the onset of buckling in virtue of the exact solution, from which the accuracy of the asymptotic solution is examined as well. It is found that the derived asymptotic solution offers extremely precise prediction even for moderately thick bilayers. Compared with the leading-order approximation, which can be obtained by use of the Euler-Bernoulli beam equations, we furnish some higher-order corrections. It is expected that these concise formulas will pave a convenient way to regulate buckling instability in bilayer structures, and further supply a benchmark for estimating the accuracy of certain reduced models.

摘要

本文研究了由可压缩超弹性材料组成的双层结构在轴向压缩下的屈曲失稳问题. 使用neo-Hookean本构模型和Blatz-Ko本构模型, 在有限变形理论框架下推导了欧拉屈曲的临界失稳条件. 对于细长结构, 采用摄动法得到了屈曲临界压缩比的二阶(neo-Hookean材料)和三阶(Blatz-Ko材料)渐近解析解. 基于精确分岔条件分析了结构几何参数和材料参数对失稳临界载荷的影响, 同时校核了渐近解的准确性和适用范围. 相较于根据欧拉伯努利梁理论得到的一阶近似解, 本文给出了一些高阶修正项, 提高了渐近解的精度, 进一步发现材料非线性和泊松比仅对渐近解的高阶项有影响. 研究结果可指导双层结构屈曲失稳的调控, 还可以作为基准问题为新型简化理论和数值方法的精度校核提供参考.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. L. Euler, Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes Sive Solutio Problematis Isoperimetrici Latissimo Sensu Accepti (Marc-Michel Bousquet & Co., Lausanne, Geneva, 1744).

  2. S. P. Timoshenko, and J. M. Gere, Theory of Elastic Stability (McGraw-Hill, New York, 1961).

    Google Scholar 

  3. J. Arbocz, M. Potier-Ferry, J. Singer, and V. Tvergaard, Lecture Notes in Physics: Buckling and Post-Buckling, Vol. 288 (Springer-Verlag, Berlin, 1987).

    MATH  Google Scholar 

  4. S. Emam, and W. Lacarbonara, A review on buckling and postbuckling of thin elastic beams, Eur. J. Mech.-A Soilds 92, 104449 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  5. M. A. Biot, Mechanics of Incremental Deformations (Jonh Wiley & Sons, New York, 1965).

    Book  Google Scholar 

  6. R. W. Ogden, Non-linear Elastic Deformation (Jonh Wiley & Sons, New York, 1984).

    Google Scholar 

  7. M. F. Beatty, and D. E. Hook, Some experiments on the stability of circular, rubber bars under end thrust, Int. J. Solids Struct. 4, 623 (1968).

    Article  Google Scholar 

  8. M. F. Beatty, and P. Dadras, Some experiments on the elastic stability of some highly elastic bodies, Int. J. Eng. Sci. 14, 233 (1968).

    Article  Google Scholar 

  9. E. W. Wilkes, On the stability of a circular tube under end thrust, Q. J. Mech. Appl. Math. 8, 88 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  10. H. C. Simpson, and S. J. Spector, On barrelling for a special material in finite elasticity, Quart. Appl. Math. 42, 99 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  11. H. C. Simpson, and S. J. Spector, On barrelling instabilities in finite elasticity, J. Elast. 14, 103 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  12. P. J. Davies, Buckling and barrelling instabilities in finite elasticity, J. Elast. 21, 147 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  13. P. J. Davies, Buckling and barrelling instabilities on non-linearly elastic columns, Quart. Appl. Math. 49, 407 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Goriely, R. Vandiver, and M. Destrade, Nonlinear Euler buckling, Proc. R. Soc. A. 464, 3003 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  15. R. De Pascalis, M. Destrade, and A. Goriely, Nonlinear correction to the Euler buckling formula for compressed cylinders with guided-guided end conditions, J. Elast. 102, 191 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  16. R. W. Ogden, and D. G. Roxburgh, The effect of pre-stress on the vibration and stability of elastic plates, Int. J. Eng. Sci. 31, 1611 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  17. D. G. Roxburgh, and R. W. Ogden, Stability and vibration of pre-stressed compressible elastic plates, Int. J. Eng. Sci. 32, 427 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  18. N. Triantafyllidis, W. M. Scherzinger, and H.-H. Huang, Post-bifurcation equilibria in the plane-strain test of a hyperelastic rectangular block, Int. J. Solids Struct. 44, 3700 (2007).

    Article  MATH  Google Scholar 

  19. N. Triantafyllidis, and R. Peek, On stability and the worst imperfection shape in solids with nearly simultaneous eigenmodes, Int. J. Solids Struct. 29, 2281 (1992).

    Article  MathSciNet  Google Scholar 

  20. F.-F. Wang, and H.-H. Dai, Asymptotic bifurcation analysis and post-buckling for uniaxial compression of a thin incompressible hyperelastic rectangle, IMA J. Appl. Math. 75, 506 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  21. H.-H. Dai, and Y. Huo, Asymptotically approximate model equations for nonlinear dispersive waves in incompressible elastic rods, Acta Mech. 157, 97 (2002).

    Article  MATH  Google Scholar 

  22. H.-H. Dai, X. J. Fan, Asymptotically approximate model equations for weakly nonlinear long waves in compressible elastic rods and their comparisons with other simplified model equations, Math. Mech. Solids 9, 61 (2004).

    MathSciNet  MATH  Google Scholar 

  23. H.-H. Dai, and F.-F. Wang, Analytical solutions for the post-buckling states of an incompressible hyperelastic layer, Anal. Appl. 10, 21 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  24. H.-H. Dai, Y. Wang, and F.-F. Wang, Primary and secondary bifurcations of a compressible hyperelastic layer: Asymptotic model equations and solutions, Int. J. Non-Linear Mech. 52, 58 (2013).

    Article  Google Scholar 

  25. F.-F. Wang, and Y. Wang, Supercritical and subcritical buckling bifurcations for a compressible hyperelastic slab subjected to compression, Int. J. Non-Linear Mech. 81, 75 (2016).

    Article  Google Scholar 

  26. Y. Chen, and L. Jin, From continuous to snapping-back buckling: A post-buckling analysis for hyperelastic columns under axial compression, Int. J. Non-Linear Mech. 125, 103532 (2020).

    Article  Google Scholar 

  27. Y. Liu, and H.-H. Dai, Compression of a hyperelastic layer-substrate structure: Transitions between buckling and surface modes, Int. J. Eng. Sci. 80, 74 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  28. Y. Zhang, Y. Huang, and J. A. Rogers, Mechanics of stretchable batteries and supercapacitors, Solid State Mater. Sci. 19, 190 (2015).

    Article  Google Scholar 

  29. A. Bayat, and F. Gordaninejad, Switching band-gaps of a phononic crystal slab by surface instability, Smart Mater. Struct. 24, 075009 (2015).

    Article  Google Scholar 

  30. D. Y. Khang, H. Jiang, Y. Huang, and J. A. Rogers, A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates, Science 311, 208 (2006).

    Article  Google Scholar 

  31. J. A. Rogers, T. Someya, and Y. Huang, Materials and mechanics for stretchable electronics, Science 327, 1603 (2010).

    Article  Google Scholar 

  32. H.-H. Dai, and Y. Liu, Critical thickness ratio for buckled and wrinkled fruits and vegetables, Europhys. Lett. 108, 44003 (2014).

    Article  Google Scholar 

  33. R. Zhao, and X. Zhao, Multimodal surface instabilities in curved film-substrate structures, J. Appl. Mech. 84, 081001 (2017).

    Article  Google Scholar 

  34. T. Ma, H. Liang, G. Chen, B. Poon, H. Jiang, and H. Yu, Micro-strain sensing using wrinkled stiff thin films on soft substrates as tunable optical grating, Opt. Express 21, 11994 (2013).

    Article  Google Scholar 

  35. P. Kim, Y. Hu, J. Alvarenga, M. Kolle, Z. Suo, and J. Aizenberg, Rational design of mechano-responsive optical materials by fine tuning the evolution of strain-dependent wrinkling patterns, Adv. Opt. Mater. 1, 381 (2013).

    Article  Google Scholar 

  36. B. Li, Y. P. Cao, X. Q. Feng, and H. J. Gao, Mechanics of morphological instabilities and surface wrinkling in soft materials: A review, Soft Matter 8, 5728 (2012).

    Article  Google Scholar 

  37. A. Goriely, The Mathematics and Mechanics of Biological Growth (Springer, New York, 2017).

    Book  MATH  Google Scholar 

  38. Z. X. Cai, and Y. B. Fu, On the imperfection sensitivity of a coated elastic half-space, Proc. R. Soc. Lond. A 455, 3285 (1999).

    Article  MATH  Google Scholar 

  39. Z. X. Cai, and Y. B. Fu, Exact and asymptotic stability analyses of a coated elastic half-space, Int. J. Solids Struct. 37, 3101 (2000).

    Article  MATH  Google Scholar 

  40. Z. X. Cai, and Y. B. Fu, Effects of pre-stretch, compressibility and material constitution on the period-doubling secondary bifurcation of a film/substrate bilayer, Int. J. Non-Linear Mech. 115, 11 (2019).

    Article  Google Scholar 

  41. Q. Liu, and P. Qiao, Buckling analysis of bilayer beam-columns with an asymmetric delamination, Compos. Struct. 188, 363 (2018).

    Article  Google Scholar 

  42. J. F. Niven, G. Chowdhry, J. S. Sharp, and K. Dalnoki-Veress, The emergence of local wrinkling or global buckling in thin freestanding bilayer films, Eur. Phys. J. E 43, 20 (2020).

    Article  Google Scholar 

  43. S. Janbaz, K. Narooei, T. van Manen, and A. A. Zadpoor, Strain rate-dependent mechanical metamaterials, Sci. Adv. 6, eaba0616 (2020).

    Article  Google Scholar 

  44. P. M. Reis, H. M. Jaeger, and M. van Hecke, Designer matter: A perspective, Extreme Mech. Lett. 5, 25 (2015).

    Article  Google Scholar 

  45. Y. Chen, and L. Jin, Reusable energy-absorbing architected materials harnessing snapping-back buckling of wide hyperelastic columns, Adv. Funct. Mater. 31, 2102113 (2021).

    Article  Google Scholar 

  46. K. Singh, C. R. Tipton, E. Han, and T. Mullin, Magneto-elastic buckling of an Euler beam, Proc. R. Soc. A. 469, 20130111 (2013).

    Article  Google Scholar 

  47. Y. Yang, M. Li, and F. Xu, A 3D hard-magnetic rod model based on co-rotational formulations, Acta Mech. Sin. 38, 222085 (2022).

    Article  MathSciNet  Google Scholar 

  48. H.-H. Dai, and Z. Song, On a consistent finite-strain plate theory based on three-dimensional energy principle, Proc. R. Soc. A. 470, 20140494 (2014).

    Article  Google Scholar 

  49. L. A. Lubbers, M. van Hecke, and C. Coulais, A nonlinear beam model to describe the postbuckling of wide neo-Hookean beams, J. Mech. Phys. Solids 106, 191 (2015).

    Article  MathSciNet  Google Scholar 

  50. B. Audoly, and C. Lestringant, Asymptotic derivation of high-order rod models from non-linear 3D elasticity, J. Mech. Phys. Solids 148, 104264 (2021).

    Article  MathSciNet  Google Scholar 

  51. G. Wang, Y. Liu, and Y. Fu, A refined model for the buckling of film/substrate bilayers, Math. Mech. Solids 28 (2022).

  52. Y. B. Fu, and R. W. Ogden, Nonlinear stability analysis of pre-stressed elastic bodies, Continuum Mech. Thermodyn. 11, 141 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  53. T. J. Pence, and K. Gou, On compressible versions of the incompressible neo-Hookean material, Math. Mech. Solids 20, 157 (2015).

    Article  MATH  Google Scholar 

  54. P. J. Blatz, and W. L. Ko, Application of finite elastic theory to the deformation of rubbery materials, Trans. Soc. Rheology 6, 223 (1962).

    Article  Google Scholar 

  55. C. O. Horgan, Remarks on ellipticity for the generalized Blatz-Ko constitutive model for a compressible nonlinearly elastic solid, J. Elast. 42, 165 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  56. Wolfram Research Inc. Mathematica: Version 12, (Wolfram Research Inc., Champaign, 2019).

    Google Scholar 

  57. M. G. Tarantino, and K. Danas, Programmable higher-order Euler buckling modes in hierarchical beams, Int. J. Solids Struct. 167, 170 (2019).

    Article  Google Scholar 

  58. Z. Cheng, and F. Xu, Intricate evolutions of multiple-period post-buckling patterns in bilayers, Sci. China-Phys. Mech. Astron. 64, 214611 (2021).

    Article  Google Scholar 

  59. A. J. M. Spencer, Exact solutions for a thick elastic plate with a thin elastic surface layer, J Elast. 80, 53 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  60. L. Chen, X. Xing, and S. Yang, Tuning the elastic buckling of a soft block with graded material stiffness, Int. J. Solids Struct. 264, 112099 (2023).

    Article  Google Scholar 

  61. Y. Qu, F. Jin, and J. Yang, Buckling of flexoelectric semiconductor beams, Acta Mech. 232, 2623 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  62. Y. Wang, and J. Xiao, Confined thin film wrinkling on shape memory polymer with hybrid surface morphologies, Acta Mech. Sin. 37, 1063 (2022).

    Article  Google Scholar 

  63. L. Zhang, H. Du, and W. Yu, Constitutive modeling of chiral mechanical metastructures, Acta Mech. Sin. 39, 422342 (2023).

    Article  MathSciNet  Google Scholar 

  64. A. M. Vinogradov, Buckling of viscoelastic beam columns, AIAA J. 25, 479 (1987).

    Article  Google Scholar 

  65. L. Stein-Montalvo, D. P. Holmes, and G. Coupier, Delayed buckling of spherical shells due to viscoelastic knockdown of the critical load, Proc. R. Soc. A. 477, 20210253 (2021).

    Article  MathSciNet  Google Scholar 

  66. T. Liu, Y. Chen, J. W. Hutchinson, and L. Jin, Buckling of viscoelastic spherical shells, J. Mech. Phys. Solids 169, 105084 (2022).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12072227 and 12021002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu  (刘洋).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y. Higher order solution to the Euler buckling threshold for compressible hyperelastic bilayers. Acta Mech. Sin. 39, 422379 (2023). https://doi.org/10.1007/s10409-023-22379-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-22379-x

Keywords

Navigation