Skip to main content
Log in

General polygon mesh discrete element method for arbitrarily shaped particles and complex structures based on an energy-conserving contact model

基于能量守恒接触模型的任意形态颗粒和复杂结构通用多边形网格离散元方法

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Interactions between irregular particles and structures always exist in the natural environment and industrial production process. For the desired simulation into the dynamic behaviors of arbitrarily shaped particles in complex structures, a general polygon mesh discrete element method (DEM) is developed based on the general energy-conserving contact theory. Within this method, a complete normal contact model for a contact pair with a complex contact region is proposed when the elastic strain energy density is utilized to specify a contact energy function. Since the shape of both complex particles and structures are uniformly constructed by polygon meshes, a unified contact detection implementation performed in this method is introduced in detail. This proposed method is characterized by the universal and uniform models of shape construction, contact detection, and contact force calculation for both particle-particle contact pairs and particle-structure contact pairs. To qualitatively demonstrate the conservation and robustness of the method, a set of validations or simulations considering the differently shaped particles, such as convex particles, concave particles, and particles with surface asperities, are applied. It is concluded from these validations or simulations that the general polygon mesh DEM and the corresponding proposed models are valid tools for research into the behavior of granular materials in complex structures.

摘要

非规则颗粒与复杂结构的接触行为在自然环境与工业生产过程中广泛存在, 为对复杂结构中任意形态颗粒的动力过程进行合理仿真, 本文基于能量守恒接触理论发展了一种通用的多边形网格离散元方法. 在该方法中, 将弹性应变能密度用于指定接触能函数的具体形式, 从而得到了考虑接触区域复杂形貌的法向接触力模型. 同时, 针对由多边形网格统一构建的非规则颗粒和复杂结构, 建立了一个统一的接触检测施行方案. 因此, 多边形网格离散元方法针对于颗粒-颗粒和颗粒-结构之间接触行为的模拟在形状构造、接触检测和接触力计算等方面均建立了通用和统一的模型, 避免了因不同接触情形下接触计算模型的不同而导致的数值跳跃. 为了定性地验证该方法的能量守恒性和鲁棒性, 选取了一组考虑到不同形状类型(凸形、凹形和表面粗糙形)的颗粒样本进行了从简单到复杂的系列验证和模拟. 相关验证及模拟结果表明, 本文发展的通用多边形网格离散元方法及其包含的相关模型是研究复杂结构中非规则颗粒材料动力学行为的一种有效工具.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Athanassiadis, M. Z. Miskin, P. Kaplan, N. Rodenberg, S. H. Lee, J. Merritt, E. Brown, J. Amend, H. Lipson, and H. M. Jaeger, Particle shape effects on the stress response of granular packings, Soft Matter 10, 48 (2014).

    Article  Google Scholar 

  2. P. W. Cleary, and P. Owen, Effect of particle shape on structure of the charge and nature of energy utilisation in a SAG mill, Miner. Eng. 132, 48 (2019).

    Article  Google Scholar 

  3. G. Gao, and M. A. Meguid, Effect of particle shape on the response of geogrid-reinforced systems: Insights from 3D discrete element analysis, Geotextil. Geomemb. 46, 685 (2018).

    Article  Google Scholar 

  4. S. Natsui, A. Sawada, K. Terui, Y. Kashihara, T. Kikuchi, and R. O. Suzuki, DEM-SPH study of molten slag trickle flow in coke bed, Chem. Eng. Sci. 175, 25 (2018).

    Article  Google Scholar 

  5. P. W. Cleary, R. D. Morrison, and M. D. Sinnott, Prediction of slurry grinding due to media and coarse rock interactions in a 3D pilot SAG mill using a coupled DEM + SPH model, Miner. Eng. 159, 106614 (2020).

    Article  Google Scholar 

  6. X. H. Zhu, Y. X. Luo, and W. Liu, The rock breaking and ROP increase mechanisms for single-tooth torsional impact cutting using DEM, Pet. Sci. 16, 1134 (2019).

    Article  Google Scholar 

  7. P. A. Cundall, and O. D. L. Strack, A discrete numerical model for granular assemblies, Géotechnique 29, 47 (1979).

    Article  Google Scholar 

  8. G. Lu, J. R. Third, and C. R. Müller, Discrete element models for non-spherical particle systems: From theoretical developments to applications, Chem. Eng. Sci. 127, 425 (2015).

    Article  Google Scholar 

  9. W. Zhong, A. Yu, X. Liu, Z. Tong, and H. Zhang, DEM/CFD-DEM modelling of non-spherical particulate systems: Theoretical developments and applications, Powder Tech. 302, 108 (2016).

    Article  Google Scholar 

  10. J. Horabik, and M. Molenda, Parameters and contact models for DEM simulations of agricultural granular materials: A review, Biosyst. Eng. 147, 206 (2016).

    Article  Google Scholar 

  11. S. P. Timoshenko, and J. N. Goodierwrited, Theory of Elasticity, 3rd ed. (McGraw-Hill Book Company, New York, 1970).

    Google Scholar 

  12. H. P. Zhu, Z. Y. Zhou, R. Y. Yang, and A. B. Yu, Discrete particle simulation of particulate systems: Theoretical developments, Chem. Eng. Sci. 62, 3378 (2007).

    Article  Google Scholar 

  13. K. F. Malone, and B. H. Xu, Determination of contact parameters for discrete element method simulations of granular systems, Particuology 6, 521 (2008).

    Article  Google Scholar 

  14. S. Luding, Micro-macro transition for anisotropic, frictional granular packings, Int. J. Solids Struct. 41, 5821 (2004).

    Article  MATH  Google Scholar 

  15. S. Liu, F. Chen, W. Ge, and P. Ricoux, NURBS-based DEM for non-spherical particles, Particuology 49, 65 (2020).

    Article  Google Scholar 

  16. S. Wang, Y. Fan, and S. Ji, Interaction between super-quadric particles and triangular elements andits application to hopper discharge, Powder Tech. 339, 534 (2018).

    Article  Google Scholar 

  17. S. Wang, and S. Ji, A unified level set method for simulating mixed granular flows involving multiple non-spherical DEM models in complex structures, Comput. Methods Appl. Mech. Eng. 393, 114802 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. T. Feng, An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: Basic framework and general contact model, Comput. Methods Appl. Mech. Eng. 373, 113454 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. T. Feng, An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: Contact volume based model and computational issues, Comput. Methods Appl. Mech. Eng. 373, 113493 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  20. X. Lin, and T. T. Ng, A three-dimensional discrete element model using arrays of ellipsoids, Géotechnique 47, 319 (1997).

    Article  Google Scholar 

  21. Z. Y. Zhou, R. P. Zou, D. Pinson, and A. B. Yu, Dynamic simulation of the packing of ellipsoidal particles, Ind. Eng. Chem. Res. 50, 9787 (2011).

    Article  Google Scholar 

  22. S. Y. He, J. Q. Gan, D. Pinson, A. B. Yu, and Z. Y. Zhou, Flow regimes of cohesionless ellipsoidal particles in a rotating drum, Powder Tech. 354, 174 (2019).

    Article  Google Scholar 

  23. S. Zhao, and J. Zhao, A poly-superellipsoid-based approach on particle morphology for DEM modeling of granular media, Int. J. Numer. Anal. Methods Geomech. 43, 2147 (2019).

    Article  Google Scholar 

  24. S. Wang, D. Marmysh, and S. Ji, Construction of irregular particles with superquadric equation in DEM, Theor. Appl. Mech. Lett. 10, 68 (2020).

    Article  Google Scholar 

  25. S. Ji, S. Wang, and Z. Peng, Influence of external pressure on granular flow in a cylindrical silo based on discrete element method, Powder Tech. 356, 702 (2019).

    Article  Google Scholar 

  26. A. Podlozhnyuk, S. Pirker, and C. Kloss, Efficient implementation of superquadric particles in Discrete Element Method within an open-source framework, Comp. Part. Mech. 4, 101 (2016).

    Article  Google Scholar 

  27. B. Zhou, J. Wang, and H. Wang, Three-dimensional sphericity, roundness and fractal dimension of sand particles, Géotechnique 68, 18 (2018).

    Article  Google Scholar 

  28. G. Mollon, and J. Zhao, 3D generation of realistic granular samples based on random fields theory and Fourier shape descriptors, Comput. Methods Appl. Mech. Eng. 279, 46 (2014).

    Article  MATH  Google Scholar 

  29. S. A. Galindo-Torres, D. M. Pedroso, D. J. Williams, and L. Li, Breaking processes in three-dimensional bonded granular materials with general shapes, Comput. Phys. Commun. 183, 266 (2012).

    Article  Google Scholar 

  30. S. A. Galindo-Torres, J. D. Muñoz, and F. Alonso-Marroquán, Minkowski-Voronoi diagrams as a method to generate random packings of spheropolygons for the simulation of soils, Phys. Rev. E 82, 056713 (2010).

    Article  Google Scholar 

  31. R. Kawamoto, E. Andò, G. Viggiani, and J. E. Andrade, Level set discrete element method for three-dimensional computations with triaxial case study, J. Mech. Phys. Solids 91, 1 (2016).

    Article  MathSciNet  Google Scholar 

  32. Y. Lv, H. Li, X. Zhu, and W. Liu, Discrete element method simulation of random Voronoi grain-based models, Cluster Comput. 20, 335 (2016).

    Article  Google Scholar 

  33. X. Tan, M. Zhao, Z. Zhu, and Y. Jin, Elastic properties calibration approach for discrete element method model based on voronoi tessellation method, Geotech. Geol. Eng. 37, 2227 (2018).

    Article  Google Scholar 

  34. N. Govender, D. N. Wilke, and S. Kok, Collision detection of convex polyhedra on the NVIDIA GPU architecture for the discrete element method, Appl. Math. Comput. 267, 810 (2015).

    MathSciNet  MATH  Google Scholar 

  35. Z. Lai, Q. Chen, and L. Huang, Fourier series-based discrete element method for computational mechanics of irregular-shaped particles, Comput. Methods Appl. Mech. Eng. 362, 112873 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  36. M. V. Craveiro, A. Gay Neto, and P. Wriggers, Contact between rigid convex NURBS particles based on computer graphics concepts, Comput. Methods Appl. Mech. Eng. 386, 114097 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  37. Y. Feng, A generic energy-conserving discrete element modeling strategy for concave particles represented by surface triangular meshes, Int. J. Numer. Methods Eng. 122, 2581 (2021).

    Article  MathSciNet  Google Scholar 

  38. Y. T. Feng, An effective energy-conserving contact modelling strategy for spherical harmonic particles represented by surface triangular meshes with automatic simplification, Comput. Methods Appl. Mech. Eng. 379, 113750 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  39. T. Qiao, J. Li, and S. Ji, A modified discrete element method for concave granular materials based on energy-conserving contact model, Theor. Appl. Mech. Lett. 12, 100325 (2022).

    Article  Google Scholar 

  40. C. A. Radeke, B. J. Glasser, and J. G. Khinast, Large-scale powder mixer simulations using massively parallel GPU architectures, Chem. Eng. Sci. 65, 6435 (2010).

    Article  Google Scholar 

  41. S. Wangchai, Numerical simulation of the flow of agricultural seeds inside a rotary drum dryer by DEM, IOP Conf. Ser.-Earth Environ. Sci. 301, 012048 (2019).

    Article  Google Scholar 

  42. L. Zhang, Z. Jiang, F. Weigler, F. Herz, J. Mellmann, and E. Tsotsas, PTV measurement and DEM simulation of the particle motion in a flighted rotating drum, Powder Tech. 363, 23 (2020).

    Article  Google Scholar 

  43. S. Ji, S. Wang, and Z. Zhou, Influence of particle shape on mixing rate in rotating drums based on super-quadric DEM simulations, Adv. Powder Tech. 31, 3540 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1500302 and 2018YFA0605902), and the National Natural Science Foundation of China (Grant Nos. 11872136, 42176241, and U20A20327).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunying Ji  (季顺迎).

Additional information

Author contributions

Ji Li designed the overall scheme of the general polygon mesh discrete element method proposed in this paper, and completed the initial code construction. Ting Qiao developed an energy-conserving contact model based on elastic strain energy theoretically, and further improved the code implementation of the proposed method. Ji Li and Ting Qiao jointly designed the verification scheme and organized the manuscript. Shunying Ji managed the project, provided research resources, and revised and edited the final version of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Qiao, T. & Ji, S. General polygon mesh discrete element method for arbitrarily shaped particles and complex structures based on an energy-conserving contact model. Acta Mech. Sin. 39, 722245 (2023). https://doi.org/10.1007/s10409-022-22245-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22245-x

Keywords

Navigation