Skip to main content
Log in

Molecular simulation-guided and physics-informed mechanistic modeling of multifunctional polymers

  • Perspective
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Polymeric materials have a broad range of mechanical and physical properties. They have been widely used in material science, biomedical engineering, chemical engineering, and mechanical engineering. The introduction of active elements into the soft matrix of polymers has enabled much more diversified functionalities of polymeric materials, such as self-healing, electroactive, magnetosensitive, pH-responsive, and many others. To further enable applications of these multifunctional polymers, a mechanistic modeling method is required and of great significance, as it can provide links between materials’ micro/nano-structures and their macroscopic mechanical behaviors. Towards this goal, molecular simulation plays an important role in understanding the deformation and evolution of polymer networks under external loads and stimuli. These molecular insights provide physical guidance in the formulation of mechanistic-based continuum models for multifunctional polymers. In this perspective, we present a molecular simulation-guided and physics-informed modeling framework for polymeric materials. Firstly, the physical theory for polymer chains and their networks is briefly introduced. It serves as the foundation for mechanistic-models of polymers, linking their chemistry, physics, and mechanics together. Secondly, the deformation of the polymer network is used to derive the strain energy density functions. Thus, the corresponding continuum models can capture the intrinsic deformation mechanisms of polymer networks. We then highlight several representative examples across multiphysics coupling problems to describe in detail for this proposed framework. Last but not least, we discuss potential challenges and opportunities in the modeling of multifunctional polymers for future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rogers, J.A., Someya, T., Huang, Y.: Materials and mechanics for stretchable electronics. Science 327(5973), 1603–1607 (2010)

    Article  Google Scholar 

  2. Stoppa, M., Chiolerio, A.: Wearable electronics and smart textiles: a critical review. Sensors 14(7), 11957–11992 (2014)

    Article  Google Scholar 

  3. Zeng, W., Shu, L., Li, Q., et al.: Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26(31), 5310–5336 (2014)

    Article  Google Scholar 

  4. Yu, Y., Nyein, H.Y.Y., Gao, W., et al.: Flexible electrochemical bioelectronics: the rise of in situ bioanalysis. Adv. Mater. 32(15), 1902083 (2020)

    Article  Google Scholar 

  5. Kim, S., Byun, J., Choi, S., et al.: Negatively strain-dependent electrical resistance of magnetically arranged nickel composites: Application to highly stretchable electrodes and stretchable lighting devices. Adv. Mater. 26(19), 3094–3099 (2014)

    Article  Google Scholar 

  6. Jeong, J., Wang, Q., Cha, J., et al.: Remote heteroepitaxy of gan microrod heterostructures for deformable light-emitting diodes and wafer recycle. Sci. Adv. 6(23), eaaz5180 (2020)

  7. Trivedi, D., Rahn, C.D., Kier, W.M., et al.: Soft robotics: Biological inspiration, state of the art, and future research. Appl. Bionics Biomech. 5(3), 99–117 (2008)

    Article  Google Scholar 

  8. Ilievski, F., Mazzeo, A.D., Shepherd, R.F., et al.: Soft robotics for chemists. Angew. Chem. Int. Ed. 123(8), 1930–1935 (2011)

    Article  Google Scholar 

  9. Kim, S., Laschi, C., Trimmer, B.: Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31(5), 287–294 (2013)

    Article  Google Scholar 

  10. Someya, T., Sekitani, T., Iba, S., et al.: A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. USA 101(27), 9966–9970 (2004)

    Article  Google Scholar 

  11. Tee, B.C., Wang, C., Allen, R., et al.: An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 7(12), 825–832 (2012)

    Article  Google Scholar 

  12. Hammock, M.L., Chortos, A., Tee, B.C.-K., et al.: 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25(42), 5997–6038 (2013)

    Article  Google Scholar 

  13. Berger, J., Reist, M., Mayer, J.M., et al.: Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur. J. Pharm. Biopharm. 57(1), 19–34 (2004)

    Article  Google Scholar 

  14. Seliktar, D.: Designing cell-compatible hydrogels for biomedical applications. Science 336(6085), 1124–1128 (2012)

    Article  Google Scholar 

  15. Hoffman, A.S.: Hydrogels for biomedical applications. Adv. Drug Delivery Rev. 64, 18–23 (2012)

    Article  Google Scholar 

  16. Wang, X.-Q., Yang, Q.-S.: A general solution for one dimensional chemo-mechanical coupled hydrogel rod. Acta. Mech. Sin. 34(2), 392–399 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lei, J., Li, Z., Xu, S., et al.: Recent advances of hydrogel network models for studies on mechanical behaviors. Acta Mech. Sin., page 1, (2021)

  18. Dargazany, R., Khiem, V.N., Itskov, M.: A generalized network decomposition model for the quasi-static inelastic behavior of filled elastomers. Int. J. Plast 63, 94–109 (2014)

    Article  Google Scholar 

  19. Filipcsei, G., Feher, J., Zrınyi, M.: Electric field sensitive neutral polymer gels. J. Mol. Struct. 554(1), 109–117 (2000)

    Article  Google Scholar 

  20. Schindler, F., Lupton, J.M., Müller, J., et al.: How single conjugated polymer molecules respond to electric fields. Nat. Mater. 5(2), 141–146 (2006)

    Article  Google Scholar 

  21. Lu, S., Ramos, J., Forcada, J.: Self-stabilized magnetic polymeric composite nanoparticles by emulsifier-free miniemulsion polymerization. Langmuir 23(26), 12893–12900 (2007)

    Article  Google Scholar 

  22. Ramajo, L.A., Cristóbal, A.A., Botta, P.M., et al.: Dielectric and magnetic response of fe3o4/epoxy composites. Compos. Part A Appl. Sci. Manuf. 40(4), 388–393 (2009)

    Article  Google Scholar 

  23. Schmaljohann, D.: Thermo-and ph-responsive polymers in drug delivery. Adv. Drug Delivery Rev. 58(15), 1655–1670 (2006)

    Article  Google Scholar 

  24. Dai, S., Ravi, P., Tam, K.C.: ph-responsive polymers: synthesis, properties and applications. Soft Matter 4(3), 435–449 (2008)

    Article  Google Scholar 

  25. Prabaharan, M., Mano, J.F.: Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials. Macromol. Biosci. 6(12), 991–1008 (2006)

    Article  Google Scholar 

  26. Kim, Y.-J., Matsunaga, Y.T.: Thermo-responsive polymers and their application as smart biomaterials. J. Mater. Chem. B 5(23), 4307–4321 (2017)

    Article  Google Scholar 

  27. Brighenti, R., Li, Y., Vernerey, F.J.: Smart polymers for advanced applications: a mechanical perspective review. Front, Mater (2020)

    Google Scholar 

  28. Ogden, R.W.: Recent advances in the phenomenological theory of rubber elasticity. Rubber Chem. Technol. 59(3), 361–383 (1986)

    Article  MathSciNet  Google Scholar 

  29. Ogden, R.W.: Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proc. Math. Phys. Eng. Sci. 326(1567), 565–584 (1972)

    MATH  Google Scholar 

  30. Holzapfel, A.G.: Nonlinear Solid Mechanics II. Wiley, Hoboken (2000)

    MATH  Google Scholar 

  31. Boyce, M.C., Arruda, E.M.: Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73(3), 504–523 (2000)

    Article  Google Scholar 

  32. Serra-Aguila, A., Puigoriol-Forcada, J., Reyes, G., et al.: Viscoelastic models revisited: Characteristics and interconversion formulas for generalized kelvin-voigt and maxwell models. Acta. Mech. Sin. 35(6), 1191–1209 (2019)

    Article  MathSciNet  Google Scholar 

  33. Li, H., Liang, X., Song, W.: Buckling-controlled two-way shape memory effect in a ring-shaped bilayer. Acta. Mech. Sin. 35(6), 1217–1225 (2019)

    Article  Google Scholar 

  34. Li, Y., Tang, S., Abberton, B.C., et al.: A predictive multiscale computational framework for viscoelastic properties of linear polymers. Polymer 53(25), 5935–5952 (2012)

    Article  Google Scholar 

  35. Zhao, Q., Qi, H.J., Xie, T.: Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 49, 79–120 (2015)

    Article  Google Scholar 

  36. Li, Y., Tang, S., Kröger, M., et al.: Molecular simulation guided constitutive modeling on finite strain viscoelasticity of elastomers. J. Mech. Phys. Solids 88, 204–226 (2016)

    Article  MathSciNet  Google Scholar 

  37. Jancar, J., Douglas, J., Starr, F.W., et al.: Current issues in research on structure-property relationships in polymer nanocomposites. Polymer 51(15), 3321–3343 (2010)

    Article  Google Scholar 

  38. Fetters, L., Lohse, D., Richter, D., et al.: Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties. Macromolecules 27(17), 4639–4647 (1994)

    Article  Google Scholar 

  39. Kim, C., Chandrasekaran, A., Huan, T.D., et al.: Polymer genome: a data-powered polymer informatics platform for property predictions. J. Phys. Chem. C 122(31), 17575–17585 (2018)

    Article  Google Scholar 

  40. Chen, G., Shen, Z., Iyer, A., et al.: Machine-learning-assisted de novo design of organic molecules and polymers: Opportunities and challenges. Polymers 12(1), 163 (2020)

    Article  Google Scholar 

  41. Brinson, L.C., Deagen, M., Chen, W., et al.: Polymer nanocomposite data: curation, frameworks, access, and potential for discovery and design. ACS Macro Lett. 9(8), 1086–1094 (2020)

    Article  Google Scholar 

  42. Sánchez, P.A., Minina, E.S., Kantorovich, S.S., et al.: Surface relief of magnetoactive elastomeric films in a homogeneous magnetic field: molecular dynamics simulations. Soft Matter 15(2), 175–189 (2019)

    Article  Google Scholar 

  43. Harrison, I.P., Spada, F.: Hydrogels for atopic dermatitis and wound management: a superior drug delivery vehicle. Pharmaceutics 10(2), 71 (2018)

    Article  Google Scholar 

  44. Liu, D., Broer, D.J.: Liquid crystal polymer networks: preparation, properties, and applications of films with patterned molecular alignment. Langmuir 30(45), 13499–13509 (2014)

    Article  Google Scholar 

  45. Yu, K., Xin, A., Wang, Q.: Mechanics of self-healing polymer networks crosslinked by dynamic bonds. J. Mech. Phys. Solids 121, 409–431 (2018)

    Article  Google Scholar 

  46. Liu, W.K., Karpov, E.G., Park, H.S.: Nano Mechanics and Materials: Theory. Multiscale Methods and Applications. Wiley, Hoboken (2006)

    Book  Google Scholar 

  47. Li, Y., Abberton, B.C., Kröger, M., et al.: Challenges in multiscale modeling of polymer dynamics. Polymers 5(2), 751–832 (2013)

    Article  Google Scholar 

  48. Li, Y., Kröger, M., Liu, W.K.: Nanoparticle effect on the dynamics of polymer chains and their entanglement network. Phys. Rev. Lett. 109(11), 118001 (2012)

    Article  Google Scholar 

  49. Li, Y., Kröger, M., Liu, W.K.: Nanoparticle geometrical effect on structure, dynamics and anisotropic viscosity of polyethylene nanocomposites. Macromolecules 45(4), 2099–2112 (2012)

    Article  Google Scholar 

  50. Li, Y., Kröger, M., Liu, W.K.: Primitive chain network study on uncrosslinked and crosslinked cis-polyisoprene polymers. Polymer 52(25), 5867–5878 (2011)

    Article  Google Scholar 

  51. Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41(2), 389–412 (1993)

    Article  MATH  Google Scholar 

  52. Davidson, J.D., Goulbourne, N.: A nonaffine network model for elastomers undergoing finite deformations. J. Mech. Phys. Solids 61(8), 1784–1797 (2013)

    Article  Google Scholar 

  53. Rubinstein, M., Colby, R.H., et al.: Polymer Physics, vol. 23. Oxford University Press, New York (2003)

    Google Scholar 

  54. Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics, vol. 73. Oxford University Press, Oxford (1988)

    Google Scholar 

  55. Miehe, C., Göktepe, S., Lulei, F.: A micro-macro approach to rubber-like materials-part i: the non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52(11), 2617–2660 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  56. Darabi, E., Itskov, M.: A generalized tube model of rubber elasticity. Soft Matter 17, 1675–1684 (2021)

    Article  Google Scholar 

  57. Weiner J. H.: Statistical mechanics of elasticity. Courier Corporation, (2012)

  58. James, H.M., Guth, E.: Theory of the elastic properties of rubber. J. Chem. Phys. 11(10), 455–481 (1943)

    Article  Google Scholar 

  59. Rubinstein, M., Panyukov, S.: Nonaffine deformation and elasticity of polymer networks. Macromolecules 30(25), 8036–8044 (1997)

    Article  Google Scholar 

  60. Rubinstein, M., Panyukov, S.: Elasticity of polymer networks. Macromolecules 35(17), 6670–6686 (2002)

    Article  Google Scholar 

  61. Akagi, Y., Gong, J.P., Chung, U.-I., et al.: Transition between phantom and affine network model observed in polymer gels with controlled network structure. Macromolecules 46(3), 1035–1040 (2013)

    Article  Google Scholar 

  62. Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications, vol. 1. Elsevier, Amsterdam (2001)

    MATH  Google Scholar 

  63. Grest, G.S., Dünweg, B., Kremer, K.: Vectorized link cell fortran code for molecular dynamics simulations for a large number of particles. Comput. Phys. Commun. 55(3), 269–285 (1989)

    Article  Google Scholar 

  64. Kadau, K., Germann, T.C., Lomdahl, P.S.: Molecular dynamics comes of age: 320 billion atom simulation on bluegene/l. Int. J. Mod. Phys. C 17(12), 1755–1761 (2006)

    Article  Google Scholar 

  65. Ye, H., Xian, W., Li, Y.: Machine learning of coarse-grained models for organic molecules and polymers: Progress, opportunities, and challenges. ACS Omega 6(3), 1758–1772 (2021)

    Article  Google Scholar 

  66. Cleri, F., Yip, S., Wolf, D., et al.: Atomic-scale mechanism of crack-tip plasticity: dislocation nucleation and crack-tip shielding. Phys. Rev. Lett. 79(7), 1309 (1997)

    Article  Google Scholar 

  67. Yamakov, V., Wolf, D., Phillpot, S., et al.: Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat. Mater. 3(1), 43–47 (2004)

    Article  Google Scholar 

  68. Jang, D., Li, X., Gao, H., et al.: Deformation mechanisms in nanotwinned metal nanopillars. Nat. Nanotechnol. 7(9), 594 (2012)

    Article  Google Scholar 

  69. Buehler, M.J.: Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc. Natl. Acad. Sci. USA 103(33), 12285–12290 (2006)

    Article  Google Scholar 

  70. Buehler, M.J.: Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies. J. Mech. Behav. Biomed. Mater. 1(1), 59–67 (2008)

    Article  Google Scholar 

  71. Nova, A., Keten, S., Pugno, N.M., et al.: Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. Nano Lett. 10(7), 2626–2634 (2010)

    Article  Google Scholar 

  72. Shi, X., von Dem Bussche, A., Hurt, R.H., et al.: Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nat. Nanotechnol. 6(11), 714–719 (2011)

    Article  Google Scholar 

  73. Zhang, S., Gao, H., Bao, G.: Physical principles of nanoparticle cellular endocytosis. ACS Nano 9(9), 8655–8671 (2015)

    Article  Google Scholar 

  74. Binder, K.: Monte Carlo and Molecular Dynamics Simulations in Polymer Science. Oxford University Press, Oxford (1995)

    Google Scholar 

  75. Wasserman, Z., Salemme, F.: A molecular dynamics investigation of the elastomeric restoring force in elastin. Biopolymers 29(12–13), 1613–1631 (1990)

    Article  Google Scholar 

  76. Hossain, D., Tschopp, M.A., Ward, D., et al.: Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene. Polymer 51(25), 6071–6083 (2010)

    Article  Google Scholar 

  77. Li, C., Strachan, A.: Molecular dynamics predictions of thermal and mechanical properties of thermoset polymer epon862/detda. Polymer 52(13), 2920–2928 (2011)

    Article  Google Scholar 

  78. Hong, W., Zhao, X., Zhou, J., et al.: A theory of coupled diffusion and large deformation in polymeric gels. J. Mech. Phys. Solids 56(5), 1779–1793 (2008)

    Article  MATH  Google Scholar 

  79. Dorfmann, L., Ogden, R.W.: Nonlinear Theory of Electroelastic and Magnetoelastic Interactions, vol. 1. Springer, New York (2014)

    Book  MATH  Google Scholar 

  80. Stephanou, P.S., Baig, C., Tsolou, G., et al.: Quantifying chain reptation in entangled polymer melts: Topological and dynamical mapping of atomistic simulation results onto the tube model. J. Chem. Phys. 132(12), 124904 (2010)

    Article  Google Scholar 

  81. de Gennes, P.-G.: Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 55(2), 572–579 (1971)

    Article  Google Scholar 

  82. Kröger, M.: Shortest multiple disconnected path for the analysis of entanglements in two-and three-dimensional polymeric systems. Comput. Phys. Commun. 168(3), 209–232 (2005)

    Article  Google Scholar 

  83. Viovy, J.: Constraint release in the slip-link model and the viscoelastic properties of polymers. J. Phys. I 46(5), 847–853 (1985)

    Article  Google Scholar 

  84. Marrucci, G.: Relaxation by reptation and tube enlargement: A model for polydisperse polymers. J. Polym. Sci. B. Polym. Phys. 23(1), 159–177 (1985)

    Article  Google Scholar 

  85. Pattamaprom, C., Larson, R.G., Sirivat, A.: Determining polymer molecular weight distributions from rheological properties using the dual-constraint model. Rheol. Acta 47(7), 689–700 (2008)

    Article  Google Scholar 

  86. Pattamaprom, C., Larson, R.G., Van Dyke, T.J.: Quantitative predictions of linear viscoelastic rheological properties of entangled polymers. Rheol. Acta 39(6), 517–531 (2000)

    Article  Google Scholar 

  87. Bergström, J.S., Boyce, M.C.: Constitutive modeling of the large strain time-dependent behavior of elastomers. J. Mech. Phys. Solids 46(5), 931–954 (1998)

    Article  MATH  Google Scholar 

  88. He, G., Liu, Y., Deng, X., et al.: Constitutive modeling of viscoelastic-viscoplastic behavior of short fiber reinforced polymers coupled with anisotropic damage and moisture effects. Acta. Mech. Sin. 35(3), 495–506 (2019)

    Article  MathSciNet  Google Scholar 

  89. Miehe, C., Göktepe, S.: A micro–macro approach to rubber-like materials. part ii: The micro-sphere model of finite rubber viscoelasticity. J. Mech. Phys. Solids 53(10), 2231–2258 (2005)

  90. Tang, S., Greene, M.S., Liu, W.K.: Two-scale mechanism-based theory of nonlinear viscoelasticity. J. Mech. Phys. Solids 60(2), 199–226 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  91. Zhou, J., Jiang, L., Khayat, R.E.: A micro-macro constitutive model for finite-deformation viscoelasticity of elastomers with nonlinear viscosity. J. Mech. Phys. Solids 110, 137–154 (2018)

    Article  MathSciNet  Google Scholar 

  92. Xiang, Y., Zhong, D., Wang, P., et al.: A general constitutive model of soft elastomers. J. Mech. Phys. Solids 117, 110–122 (2018)

    Article  MathSciNet  Google Scholar 

  93. Xiang, Y., Zhong, D., Wang, P., et al.: A physically based visco-hyperelastic constitutive model for soft materials. J. Mech. Phys. Solids 128, 208–218 (2019)

    Article  MathSciNet  Google Scholar 

  94. Xiang, Y., Zhong, D., Rudykh, S., et al.: A review of physically based and thermodynamically based constitutive models for soft materials. J. Appl. Mech., 87(11), (2020)

  95. Straube, E., Urban, V., Pyckhout-Hintzen, W., et al.: Small-angle neutron scattering investigation of topological constraints and tube deformation in networks. Phys. Rev. Lett. 74(22), 4464 (1995)

    Article  Google Scholar 

  96. Pyckhout-Hintzen, W., Westermann, S., Wischnewski, A., et al.: Direct observation of nonaffine tube deformation in strained polymer networks. Phys. Rev. Lett. 110(19), 196002 (2013)

    Article  Google Scholar 

  97. Ott, M., Pérez-Aparicio, R., Schneider, H., et al.: Microscopic study of chain deformation and orientation in uniaxially strained polymer networks: Nmr results versus different network models. Macromolecules 47(21), 7597–7611 (2014)

    Article  Google Scholar 

  98. Li, Y., Liu, Z., Jia, Z., et al.: Modular-based multiscale modeling on viscoelasticity of polymer nanocomposites. Comput. Mech. 59(2), 187–201 (2017)

    Article  Google Scholar 

  99. Dorfmann, A., Ogden, R.W.: A constitutive model for the mullins effect with permanent set in particle-reinforced rubber. Int. J. Solids Struct. 41(7), 1855–1878 (2004)

    Article  MATH  Google Scholar 

  100. Merckel, Y., Diani, J., Brieu, M., et al.: Constitutive modeling of the anisotropic behavior of mullins softened filled rubbers. Mech. Mater. 57, 30–41 (2013)

    Article  Google Scholar 

  101. Raghunath, R., Juhre, D., Klüppel, M.: A physically motivated model for filled elastomers including strain rate and amplitude dependency in finite viscoelasticity. Int. J. Plast 78, 223–241 (2016)

    Article  Google Scholar 

  102. Khajehsaeid, H.: Development of a network alteration theory for the mullins-softening of filled elastomers based on the morphology of filler-chain interactions. Int. J. Solids Struct. 80, 158–167 (2016)

    Article  Google Scholar 

  103. Plagge, J., Klüppel, M.: A physically based model of stress softening and hysteresis of filled rubber including rate-and temperature dependency. Int. J. Plast 89, 173–196 (2017)

    Article  Google Scholar 

  104. Wang, M.-J.: Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates. Rubber Chem. Technol. 71(3), 520–589 (1998)

    Article  Google Scholar 

  105. Bouvard, J.-L., Francis, D.K., Tschopp, M.A., et al.: An internal state variable material model for predicting the time, thermomechanical, and stress state dependence of amorphous glassy polymers under large deformation. Int. J. Plast. 42, 168–193 (2013)

    Article  Google Scholar 

  106. Wu, F.-G., Yu, J.-S., Sun, S.-F., et al.: Stepwise ordering of imidazolium-based cationic surfactants during cooling-induced crystallization. Langmuir 28(19), 7350–7359 (2012)

    Article  Google Scholar 

  107. Kong, W., Zhu, B., Su, F., et al.: Melting temperature, concentration and cooling rate-dependent nucleating ability of a self-assembly aryl amide nucleator on poly (lactic acid) crystallization. Polymer 168, 77–85 (2019)

    Article  Google Scholar 

  108. Lohwongwatana, B., Schroers, J., Johnson, W.L.: Strain rate induced crystallization in bulk metallic glass-forming liquid. Phys. Rev. Lett. 96(7), 075503 (2006)

    Article  Google Scholar 

  109. Meng, Y., Jiang, J., Anthamatten, M.: Shape actuation via internal stress-induced crystallization of dual-cure networks. ACS Macro Lett. 4(1), 115–118 (2015)

    Article  Google Scholar 

  110. Susca, E.M., Beaucage, P.A., Thedford, R.P., et al.: Preparation of macroscopic block-copolymer-based gyroidal mesoscale single crystals by solvent evaporation. Adv. Mater. 31(40), 1902565 (2019)

    Article  Google Scholar 

  111. Li, Y., Salvator, V., Wijshoff, H., et al.: Evaporation-induced crystallization of surfactants in sessile multicomponent droplets. Langmuir 36(26), 7545–7552 (2020)

    Article  Google Scholar 

  112. Schrauwen, B.A., Janssen, R.P., Govaert, L.E., et al.: Intrinsic deformation behavior of semicrystalline polymers. Macromolecules 37(16), 6069–6078 (2004)

    Article  Google Scholar 

  113. Peterlin, A.: Morphology and properties of crystalline polymers with fiber structure. Text. Res. J. 42(1), 20–30 (1972)

    Article  Google Scholar 

  114. Bowden, P., Young, R.: Deformation mechanisms in crystalline polymers. J. Mater. Sci. 9(12), 2034–2051 (1974)

    Article  Google Scholar 

  115. Mandelkern, L.: The relation between structure and properties of crystalline polymers. Polym. J. 17(1), 337–350 (1985)

    Article  Google Scholar 

  116. Humbert, S., Lame, O., Vigier, G.: Polyethylene yielding behaviour: What is behind the correlation between yield stress and crystallinity? Polymer 50(15), 3755–3761 (2009)

    Article  Google Scholar 

  117. Zhai, Z., Fusco, C., Morthomas, J., et al.: Disentangling and lamellar thickening of linear polymers during crystallization: Simulation of bimodal and unimodal molecular weight distribution systems. ACS Nano 13(10), 11310–11319 (2019)

    Article  Google Scholar 

  118. Bouvard, J.-L., Ward, D.K., Hossain, D., et al.: A general inelastic internal state variable model for amorphous glassy polymers. Acta Mech. 213(1–2), 71–96 (2010)

    Article  MATH  Google Scholar 

  119. Wang, C., Wu, H., Chen, Z., et al.: Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 5(12), 1042 (2013)

    Article  Google Scholar 

  120. Brochu, A.B., Craig, S.L., Reichert, W.M.: Self-healing biomaterials. J. Biomed. Mater. Res. Part A 96(2), 492–506 (2011)

    Article  Google Scholar 

  121. Terryn, S., Brancart, J., Lefeber, D., Van Assche, G., Vanderborght, B.: Self-healing soft pneumatic robots. Sci. Rob. 2, 9 (2017)

    Google Scholar 

  122. Yang, Y., Urban, M.W.: Self-healing polymeric materials. Chem. Soc. Rev. 42(17), 7446–7467 (2013)

    Article  Google Scholar 

  123. Wei, Z., Yang, J.H., Zhou, J., et al.: Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chem. Soc. Rev. 43(23), 8114–8131 (2014)

    Article  Google Scholar 

  124. Thakur, V.K., Kessler, M.R.: Self-healing polymer nanocomposite materials: A review. Polymer 69, 369–383 (2015)

    Article  Google Scholar 

  125. Wu, D.Y., Meure, S., Solomon, D.: Self-healing polymeric materials: a review of recent developments. Prog. Polym. Sci. 33(5), 479–522 (2008)

    Article  Google Scholar 

  126. White, S.R., Sottos, N.R., Geubelle, P.H., et al.: Autonomic healing of polymer composites. Nature 409(6822), 794–797 (2001)

    Article  Google Scholar 

  127. Toohey, K.S., Sottos, N.R., Lewis, J.A., et al.: Self-healing materials with microvascular networks. Nat. Mater. 6(8), 581–585 (2007)

    Article  Google Scholar 

  128. Chen, X., Dam, M.A., Ono, K., et al.: A thermally re-mendable cross-linked polymeric material. Science 295(5560), 1698–1702 (2002)

    Article  Google Scholar 

  129. Ghosh, B., Urban, M.W.: Self-repairing oxetane-substituted chitosan polyurethane networks. Science 323(5920), 1458–1460 (2009)

    Article  Google Scholar 

  130. Imato, K., Nishihara, M., Kanehara, T., et al.: Self-healing of chemical gels cross-linked by diarylbibenzofuranone-based trigger-free dynamic covalent bonds at room temperature. Angew. Chem. Int. Ed. 124(5), 1164–1168 (2012)

    Article  Google Scholar 

  131. Lu, Y.-X., Guan, Z.: Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon double bonds. J. Am. Chem. Soc. 134(34), 14226–14231 (2012)

    Article  Google Scholar 

  132. Cordier, P., Tournilhac, F., Soulié-Ziakovic, C., et al.: Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451(7181), 977–980 (2008)

    Article  Google Scholar 

  133. Chen, Y., Kushner, A.M., Williams, G.A., et al.: Multiphase design of autonomic self-healing thermoplastic elastomers. Nat. Chem. 4(6), 467 (2012)

    Article  Google Scholar 

  134. Wang, Q., Mynar, J.L., Yoshida, M., et al.: High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463(7279), 339–343 (2010)

    Article  Google Scholar 

  135. Sun, T.L., Kurokawa, T., Kuroda, S., et al.: Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 12(10), 932–937 (2013)

    Article  Google Scholar 

  136. Wool, R., Oconnor, K.: A theory crack healing in polymers. J. Appl. Phys. 52(10), 5953–5963 (1981)

    Article  Google Scholar 

  137. Wool, R.P.: Self-healing materials: a review. Soft Matter 4(3), 400–418 (2008)

    Article  Google Scholar 

  138. Stukalin, E.B., Cai, L.-H., Kumar, N.A., et al.: Self-healing of unentangled polymer networks with reversible bonds. Macromolecules 46(18), 7525–7541 (2013)

    Article  Google Scholar 

  139. Balazs, A.C.: Modeling self-healing materials. Mater. Today 10(9), 18–23 (2007)

    Article  Google Scholar 

  140. Zheng, Z., Xia, X., Zeng, X., et al.: Theoretical model of time-temperature superposition principle of the self-healing kinetics of supramolecular polymer nanocomposites. Macromol. Rapid Commun. 39(20), 1800382 (2018)

    Article  Google Scholar 

  141. Fang, Y., Yue, T., Li, S., et al.: Molecular dynamics simulations of self-healing topological copolymers with a comblike structure. Macromolecules 54, 1095–1105 (2021)

    Article  Google Scholar 

  142. Wang, Q., Gao, Z.: A constitutive model of nanocomposite hydrogels with nanoparticle crosslinkers. J. Mech. Phys. Solids 94, 127–147 (2016)

    Article  MathSciNet  Google Scholar 

  143. Wang, Q., Gao, Z., Yu, K.: Interfacial self-healing of nanocomposite hydrogels: Theory and experiment. J. Mech. Phys. Solids 109, 288–306 (2017)

    Article  Google Scholar 

  144. Yu, K., Xin, A., Wang, Q.: Mechanics of light-activated self-healing polymer networks. J. Mech. Phys. Solids 124, 643–662 (2019)

    Article  MathSciNet  Google Scholar 

  145. Xin, A., Zhang, R., Yu, K., et al.: Mechanics of electrophoresis-induced reversible hydrogel adhesion. J. Mech. Phys. Solids 125, 1–21 (2019)

    Article  Google Scholar 

  146. Guadagno, L., Raimondo, M., Naddeo, C., et al.: Self-healing polymers: from principles to applications. Application of Self-Healing Materials in Aerospace Engineering, pp. 401–412, (2013)

  147. Wang, Q., Gossweiler, G.R., Craig, S.L., et al.: Mechanics of mechanochemically responsive elastomers. J. Mech. Phys. Solids 82, 320–344 (2015)

    Article  MathSciNet  Google Scholar 

  148. Bell, G.I.: Models for the specific adhesion of cells to cells. Science 200(4342), 618–627 (1978)

    Article  Google Scholar 

  149. De Gennes, P.-G., Gennes, P.-G.: Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca (1979)

    MATH  Google Scholar 

  150. Shen, Z., Ye, H., Wang, Q., et al.: Sticky rouse time features the self-healing of supramolecular polymer networks. Macromolecules, page In Revision, (2021)

  151. Yu, K., Xin, A., Feng, Z., et al.: Mechanics of self-healing thermoplastic elastomers. J. Mech. Phys. Solids 137, 103831 (2020)

    Article  MathSciNet  Google Scholar 

  152. Ihsan, A.B., Sun, T.L., Kurokawa, T., et al.: Self-healing behaviors of tough polyampholyte hydrogels. Macromolecules 49(11), 4245–4252 (2016)

    Article  Google Scholar 

  153. Dunn, M., Taya, M.: Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int. J. Solids Struct. 30(2), 161–175 (1993)

    Article  MATH  Google Scholar 

  154. Ramadan, K.S., Sameoto, D., Evoy, S.: A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater. Struct. 23(3), 033001 (2014)

    Article  Google Scholar 

  155. Wang, X., Meguid, S.: On the electroelastic behaviour of a thin piezoelectric actuator attached to an infinite host structure. Int. J. Solids Struct. 37(23), 3231–3251 (2000)

    Article  MATH  Google Scholar 

  156. Dorfmann, A., Ogden, R.: Nonlinear electroelasticity. Acta Mech. 174(3–4), 167–183 (2005)

    Article  MATH  Google Scholar 

  157. Dorfmann, A., Ogden, R.: Nonlinear electroelastic deformations. J. Elast. 82(2), 99–127 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  158. Liu, H., Bian, K., Xiong, K.: Large nonlinear deflection behavior of ipmc actuators analyzed with an electromechanical model. Acta. Mech. Sin. 35(5), 992–1000 (2019)

    Article  MathSciNet  Google Scholar 

  159. Suo, Z., Zhao, X., Greene, W.H.: A nonlinear field theory of deformable dielectrics. J. Mech. Phys. Solids 56(2), 467–486 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  160. Suo, Z.: Theory of dielectric elastomers. Acta Mech. Solida Sin. 23(6), 549–578 (2010)

    Article  Google Scholar 

  161. Cohen, N., Dayal, K., deBotton, G.: Electroelasticity of polymer networks. J. Mech. Phys. Solids 92, 105–126 (2016)

    Article  MathSciNet  Google Scholar 

  162. Itskov, M., Khiêm, V.N., Waluyo, S.: Electroelasticity of dielectric elastomers based on molecular chain statistics. Math. Mech. Solids 24(3), 862–873 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  163. Cohen, N., deBotton, G.: Electromechanical interplay in deformable dielectric elastomer networks. Phys. Rev. Lett. 116(20), 208303 (2016)

    Article  Google Scholar 

  164. Bastola, A. K., Hossain, M.: A review on magneto-mechanical characterizations of magnetorheological elastomers. Compos. B. Eng., p. 108348, (2020)

  165. Davino, D., Visone, C., Ambrosino, C., et al.: Compensation of hysteresis in magnetic field sensors employing fiber Bragg grating and magneto-elastic materials. Sens. Actuators A 147(1), 127–136 (2008)

    Article  Google Scholar 

  166. Snyder, R., Nguyen, V., Ramanujan, R.: Design parameters for magneto-elastic soft actuators. Smart Mater. Struct. 19(5), 055017 (2010)

    Article  Google Scholar 

  167. Hu, W., Lum, G.Z., Mastrangeli, M., et al.: Small-scale soft-bodied robot with multimodal locomotion. Nature 554(7690), 81–85 (2018)

    Article  Google Scholar 

  168. Alapan, Y., Karacakol, A.C., Guzelhan, S.N., et al.: Reprogrammable shape morphing of magnetic soft machines. Sci. Adv. 6(38), eabc6414 (2020)

  169. Brigadnov, I., Dorfmann, A.: Mathematical modeling of magneto-sensitive elastomers. Int. J. Solids Struct. 40(18), 4659–4674 (2003)

    Article  MATH  Google Scholar 

  170. Dorfmann, A., Ogden, R.: Magnetoelastic modelling of elastomers. Eur. J. Mech. A. Solids 22(4), 497–507 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  171. Saxena, P., Hossain, M., Steinmann, P.: A theory of finite deformation magneto-viscoelasticity. Int. J. Solids Struct. 50(24), 3886–3897 (2013)

    Article  Google Scholar 

  172. Zhao, R., Kim, Y., Chester, S.A., et al.: Mechanics of hard-magnetic soft materials. J. Mech. Phys. Solids 124, 244–263 (2019)

    Article  MathSciNet  Google Scholar 

  173. Sánchez, P.A., Cerda, J.J., Sintes, T.M., et al.: The effect of links on the interparticle dipolar correlations in supramolecular magnetic filaments. Soft Matter 11(15), 2963–2972 (2015)

    Article  Google Scholar 

  174. Sánchez, P.A., Gundermann, T., Dobroserdova, A., et al.: Importance of matrix inelastic deformations in the initial response of magnetic elastomers. Soft Matter 14(11), 2170–2183 (2018)

    Article  Google Scholar 

  175. Rozhkov, D., Pyanzina, E., Novak, E., et al.: Self-assembly of polymer-like structures of magnetic colloids: Langevin dynamics study of basic topologies. Mol. Simul. 44(6), 507–515 (2018)

    Article  Google Scholar 

  176. Sánchez, P.A., Stolbov, O.V., Kantorovich, S.S., et al.: Modeling the magnetostriction effect in elastomers with magnetically soft and hard particles. Soft Matter 15(36), 7145–7158 (2019)

    Article  Google Scholar 

  177. Garcia-Gonzalez, D., Hossain, M.: A microstructural-based approach to model magneto-viscoelastic materials at finite strains. Int. J, Solids Struct (2020)

    Google Scholar 

  178. Ahmed, E.M.: Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 6(2), 105–121 (2015)

    Article  Google Scholar 

  179. Sun, J.-Y., Zhao, X., Illeperuma, W.R., et al.: Highly stretchable and tough hydrogels. Nature 489(7414), 133–136 (2012)

    Article  Google Scholar 

  180. Zhang, Y.S., Khademhosseini, A.: Advances in engineering hydrogels. Science 356(6337), (2017)

  181. Han, L., Lu, X., Wang, M., et al.: A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics. Small 13(2), 1601916 (2017)

    Article  Google Scholar 

  182. Yuk, H., Lu, B., Zhao, X.: Hydrogel bioelectronics. Chem. Soc. Rev. 48(6), 1642–1667 (2019)

    Article  Google Scholar 

  183. Yang, C., Suo, Z.: Hydrogel ionotronics. Nat. Rev. Mater. 3(6), 125 (2018)

    Article  Google Scholar 

  184. Wan, C., Xiao, K., Angelin, A., et al.: The rise of bioinspired ionotronics. Adv. Intell. Syst. 1(7), 1900073 (2019)

    Article  Google Scholar 

  185. Cai, S., Suo, Z.: Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels. J. Mech. Phys. Solids 59(11), 2259–2278 (2011)

    Article  MATH  Google Scholar 

  186. Liu, Z., Toh, W., Ng, T.Y.: Advances in mechanics of soft materials: A review of large deformation behavior of hydrogels. Int. J. Appl. Mech. 7(05), 1530001 (2015)

    Article  Google Scholar 

  187. Tamai, Y., Tanaka, H., Nakanishi, K.: Molecular dynamics study of polymer- water interaction in hydrogels. 1. hydrogen-bond structure. Macromolecules 29(21), 6750–6760 (1996)

  188. Tamai, Y., Tanaka, H., Nakanishi, K.: Molecular dynamics study of polymer–water interaction in hydrogels. 2. Hydrogen-bond dynamics. Macromolecules 29(21), 6761–6769 (1996)

  189. Chiessi, E., Cavalieri, F., Paradossi, G.: Water and polymer dynamics in chemically cross-linked hydrogels of poly (vinyl alcohol): A molecular dynamics simulation study. J. Phys. Chem. B 111(11), 2820–2827 (2007)

    Article  Google Scholar 

  190. Walter, J., Sehrt, J., Vrabec, J., et al.: Molecular dynamics and experimental study of conformation change of poly (n-isopropylacrylamide) hydrogels in mixtures of water and methanol. J. Phys. Chem. B 116(17), 5251–5259 (2012)

    Article  Google Scholar 

  191. Jackson Jr, W.J.: Liquid crystal polymers. iv. liquid crystalline aromatic polyesters. Br. Polym. J. 12(4), 154–162 (1980)

  192. Jackson, W., Jr., Kuhfuss, H.: Liquid crystal polymers. i. preparation and properties of p-hydroxybenzoic acid copolyesters. J. Polym. Sci., Part A: Polym. Chem. 34(15), 3031–3046 (1996)

  193. Sastri, V. R.: Plastics in medical devices: properties, requirements, and applications. William Andrew, (2013)

  194. Jawaid, M., Khan, M.M.: Polymer-Based Nanocomposites for Energy and Environmental Applications. Woodhead Publishing, Sawston (2018)

    Google Scholar 

  195. Pang, X., Lv, J.-A., Zhu, C., et al.: Photodeformable azobenzene-containing liquid crystal polymers and soft actuators. Adv. Mater. 31(52), 1904224 (2019)

    Article  Google Scholar 

  196. Liu, Y., Wu, W., Wei, J., et al.: Visible light responsive liquid crystal polymers containing reactive moieties with good processability. ACS Appl. Mater. Interfaces 9(1), 782–789 (2017)

    Article  Google Scholar 

  197. da Cunha, M.P., Debije, M.G., Schenning, A.P.: Bioinspired light-driven soft robots based on liquid crystal polymers. Chem. Soc, Rev (2020)

    Google Scholar 

  198. White, T.J., Broer, D.J.: Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 14(11), 1087–1098 (2015)

    Article  Google Scholar 

  199. Corbett, D., Warner, M.: Nonlinear photoresponse of disordered elastomers. Phys. Rev. Lett. 96(23), 237802 (2006)

    Article  Google Scholar 

  200. van Oosten, C.L., Corbett, D., Davies, D., et al.: Bending dynamics and directionality reversal in liquid crystal network photoactuators. Macromolecules 41(22), 8592–8596 (2008)

    Article  Google Scholar 

  201. Jin, L., Zeng, Z., Huo, Y.: Thermomechanical modeling of the thermo-order-mechanical coupling behaviors in liquid crystal elastomers. J. Mech. Phys. Solids 58(11), 1907–1927 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  202. Patnaik, S., Pachter, R.: Anchoring characteristics and interfacial interactions in a polymer dispersed liquid crystal: a molecular dynamics study. Polymer 40(23), 6507–6519 (1999)

    Article  Google Scholar 

  203. Brostow, W., Cunha, A.M., Quintanilla, J., et al.: Crack formation and propagation in molecular dynamics simulations of polymer liquid crystals. Macromol. Theory Simul. 11(3), 308–314 (2002)

    Article  Google Scholar 

  204. Stimson, L.M., Wilson, M.R.: Molecular dynamics simulations of side chain liquid crystal polymer molecules in isotropic and liquid-crystalline melts. J. Chem. Phys. 123(3), 034908 (2005)

    Article  Google Scholar 

  205. Wilson, M.R.: Progress in computer simulations of liquid crystals. Int. Rev. Phys. Chem. 24(3–4), 421–455 (2005)

    Article  Google Scholar 

  206. Muliana, A., Li, K.-A.: Time-dependent response of active composites with thermal, electrical, and mechanical coupling effect. Int. J. Eng. Sci. 48(11), 1481–1497 (2010)

    Article  Google Scholar 

  207. Hiemenz, P.C., Lodge, T.P.: Polymer Chemistry. CRC Press, Boca Raton (2007)

    Book  Google Scholar 

  208. Zhong, M., Wang, R., Kawamoto, K., et al.: Quantifying the impact of molecular defects on polymer network elasticity. Science 353(6305), 1264–1268 (2016)

  209. Itskov, M., Knyazeva, A.: A rubber elasticity and softening model based on chain length statistics. Int. J. Solids Struct. 80, 512–519 (2016)

  210. Verron, E., Gros, A.: An equal force theory for network models of soft materials with arbitrary molecular weight distribution. J. Mech. Phys. Solids 106, 176–190 (2017)

    Article  MathSciNet  Google Scholar 

  211. Lin, S., Zhao, X.: Fracture of polymer networks with diverse topological defects. Phys. Rev. E 102(5), 052503 (2020)

    Article  Google Scholar 

  212. Tang, S., Zhang, G., Yang, H., et al.: Map123: A data-driven approach to use 1d data for 3d nonlinear elastic materials modeling. Comput. Methods Appl. Mech. Eng. 357, 112587 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  213. Tang, S., Li, Y., Qiu, H., et al.: Map123-ep: A mechanistic-based data-driven approach for numerical elastoplastic analysis. Comput. Methods Appl. Mech. Eng. 364, 112955 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  214. Tang, S., Yang, H., Qiu, H., et al.: Map123-epf: A mechanistic-based data-driven approach for numerical elastoplastic modeling at finite strain. Comput. Methods Appl. Mech. Eng., 373:113484

  215. Saha, S., Gan, Z., Cheng, L., et al.: Hierarchical deep learning neural network (hidenn): An artificial intelligence (ai) framework for computational science and engineering. Comput. Methods Appl. Mech. Eng., 373:113452

  216. Ghaderi, A., Morovati, V., Dargazany, R.: A physics-informed assembly of feed-forward neural network engines to predict inelasticity in cross-linked polymers. Polymers 12(11), 2628 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

Y.L. would like to thank the support from the Interdisciplinary Multi-Investigator Materials Proposals (IMMP) program of the Institute of Materials Science at the University of Connecticut, and the funding support from the National Science Foundation (CMMI-1762661 and CMMI-1934829). Q.W. acknowledges the funding support from the National Science Foundation (CMMI-1762567 and CMMI-1943598). The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources (Frontera project and the National Science Foundation Award 1818253) that have contributed to the research results reported within this paper. This research benefited in part from the computational resources and staff contributions provided by the Booth Engineering Center for Advanced Technology (BECAT) at the University of Connecticut.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Additional information

Executive Editor: Shaoxing Qu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Xian, W., Wang, Q. et al. Molecular simulation-guided and physics-informed mechanistic modeling of multifunctional polymers. Acta Mech. Sin. 37, 725–745 (2021). https://doi.org/10.1007/s10409-021-01100-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-021-01100-3

Keywords

Navigation