Skip to main content
Log in

Prediction on nonlinear mechanical performance of random particulate composites by a statistical second-order reduced multiscale approach

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A novel statistical second-order reduced multiscale (SSRM) approach is established for nonlinear composite materials with random distribution of grains. For these composites considered in this work, the complex microstructure of grains, including their shape, orientation, size, spatial distribution, volume fraction and so on, results in changing of the macroscopic mechanical properties. The first- and second-order unit cell functions based on two-scale asymptotic expressions are constructed at first. Then, the expected homogenized parameters are defined, and the nonlinear homogenization equation on global structure is established, successively. Further, an effective reduced model format for analyzing second-order nonlinear unit cell problem with less computation cost is introduced in detail. Finally, some numerical examples for the materials with varying distribution models are evaluated and compared with the data by theoretical models and experimental results. These examples illustrate that the proposed SSRM approaches are effective for predicting the macroscopic properties of the random composite materials and supply a potential application in actual engineering computation.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Kuznetsov, S., Fish, J.: Mathematical homogenization theory for electroactive continuum. Int. J. Numer. Meth. Eng. 91, 1199–1226 (2012)

    Article  MathSciNet  Google Scholar 

  2. Christensen, R.M.: A critical evaluation for a class of micro-mechanics models. J. Mech. Phys. Solids 38(3), 379–404 (1990)

    Article  Google Scholar 

  3. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. American Mathematical Society, Rhode Island (2011)

    MATH  Google Scholar 

  4. Oleinik, O.A., Shamaev, A.S., Yosifian, G.A.: Mathematical Problems in Elasticity and Homogenization. North-Holland, Amsterdam (1992)

    MATH  Google Scholar 

  5. Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functions. Springer, Berlin (1994)

    Book  Google Scholar 

  6. Li, Z.H., Ma, Q., Cui, J.Z.: Second-order two-scale finite element algorithm for dynamic thermo-mechanical coupling problem in symmetric structure. J. Comput. Phys. 314, 712–748 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chu, S.: Guilleminot, J.: Stochastic multiscale modeling with random fields of material properties defined on nonconvex domains. Mech. Res. Commun. 97, 39–45 (2019)

  8. Ee, W., Engquist, B.: The heterogenous multiscale methods. Commun. Math. Sci. 1, 87–132 (2003)

    Article  MathSciNet  Google Scholar 

  9. Abdulle, A., Nonnenmacher, A.: Adaptive finite element heterogeneous multiscale method for homogenization problems. Comput. Methods Appl. Mech. Engrg. 200, 2710–2726 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hou, T.Y., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, H.W., Wu, J.K., Fu, Z.D.: Extended multiscale finite element method for elasto-plastic analysis of 2D periodic lattice truss materials. Comput. Mech. 45, 623–635 (2010)

    Article  MATH  Google Scholar 

  13. Hughes, T.J.R.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Engrg. 127, 387–401 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zabaras, N., Ganapathysubramanian, B.: A stochastic multiscale framework for modeling flow through random heterogeneous porous media. J. Comput. Phys. 228, 591–618 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang, S., Oskay, C.: Reduced order variational multiscale enrichment method for elasto-viscoplastic problems. Comput. Methods Appl. Mech. Engrg. 300, 199–224 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Geers, M.G.D., Kouznetsova, V., Brekelmans, W.A.M.: Gradient-enhanced computational homogenization for the micro-macro scale transition. J. de Physique IV 11, 145–152 (2001)

    Google Scholar 

  17. Yu, X.G., Cui, J.Z.: The prediction on mechanical properties of 4-step braided composites via two-scale method. Compos. Sci. Technol. 67, 471–480 (2007)

    Article  Google Scholar 

  18. Guan, X.F., Liu, X., Jia, X., et al.: A stochastic multiscale model for predicting mechanical properties of fiber reinforced concrete. Int. J. Solids Struct. 56–57, 280–289 (2015)

    Article  Google Scholar 

  19. Yang, Z.Q., Sun, Y., Cui, J.Z., et al.: A multiscale algorithm for heat conduction-radiation problems in porous materials with quasi-periodic structures. Commun. Comput. Phys. 24, 204–233 (2018)

    Article  MathSciNet  Google Scholar 

  20. Yang, Z.Q., Cui, J.Z., Sun, Y.: Transient heat conduction problem with radiation boundary condition of statistically inhomogeneous materials by second-order two-scale method. Int. J. Heat Mass. Tran. 100, 362–377 (2016)

    Article  Google Scholar 

  21. Allaire, G., Habibi, Z.: Second order corrector in the homogenization of a conductive-radiative heat transfer problem. Discret Contin. Dyn.-B 18(1), 1–36 (2013)

  22. Bourgat, J.F.: Numerical experiments of the homogenization method for operators with periodic coefficients. in: Computing Methods in Applied Sciences and Engineering, pp. 330–356, Springer, Berlin (1979)

  23. Gambin, B., Kroner, E.: Higher-order terms in the homogenized stress-strain relation of periodic elastic media. Phys. Stat. Sol. 151, 513–519 (1989)

    Article  Google Scholar 

  24. Bacigalupo, A.: Second-order homogenization of periodic materials based on asymptotic approximation of the strain energy: formulation and validity limits. Meccanica 49, 1407–1425 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Smyshlyaev, V.P., Cherednichenko, K.D.: On rigorous derivation of strain gradient effects in the overall behavior of periodic heterogeneous media. J. Mech. Phys. Solids 48, 1325–1357 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Boutin, C., Auriault, J.L.: Dynamic behaviour of porous media saturated by a viscoelastic fluid. Application to bituminous concretes. Int. J. Eng. Sci. 28(11), 1157–1181 (1990)

  27. Fish, J., Kuznetsov, S.: Computational continua. Int. J. Numer. Meth. Eng. 84, 774–802 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ameen, M.M., Peerlings, R.H.J., Geers, M.G.D.: A quantitative assessment of the scale separation limits of classical and higher-order asymptotic homogenization. Eur. J. Mech. A 71, 89–100 (2018)

  29. Coenen, E.W.C., Kouznetsova, V., Geers, M.G.D.: Computational homogenization for heterogeneous thin sheets. Int. J. Numer. Meth. Eng. 83(8–9), 1180–1205 (2010)

    Article  MATH  Google Scholar 

  30. Kouznetsova, V., Geers, M.G.D., Brekelmans, W.A.M.: Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Meth. Eng. 54, 1235–1260 (2002)

    Article  MATH  Google Scholar 

  31. Anthoine, A.: Second-order homogenization of functionally graded materials. Int. J. Solids Struct. 47(11–12), 1477–1489 (2010)

    Article  MATH  Google Scholar 

  32. Goupee, A.J., Vel, S.S.: Multiscale thermoelastic analysis of random heterogeneous materials Part II: Direct micromechanical failure analysis and multiscale simulations. Comp. Mater. Sci. 48, 39–53 (2010)

    Article  Google Scholar 

  33. Brahim-Otsmane, S., Francort, G., Murat, F.: Homogenization in Thermoelasticity in Random Media and Composites. SIAM Press, Philadelphia (1988)

    Google Scholar 

  34. Khan, K.A., Barello, R., Muliana, H., et al.: Coupled heat conduction and thermal stress analyses in particulate composites. Mech. Mater. 43, 608–625 (2011)

    Article  Google Scholar 

  35. Clément, A., Soize, C., Yvonnet, J.: Uncertainty quantification in computational stochastic multiscale analysis of nonlinear elastic materials. Comput. Methods Appl. Mech. Eng. 254, 61–82 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sokolowski, D., Kamiński, M.: Homogenization of carbon/polymer composites with anisotropic distribution of particles and stochastic interface defects. Acta Mech. 229(9), 3727–3765 (2018)

    Article  MathSciNet  Google Scholar 

  37. Trovalusci, P., Ostoja-Starzewski, M., Laur De Bellis, M., et al.: Scale-dependent homogenization of random composites as micropolar continua, Eur. J. Mech.-A/Solids 49, 396–407 (2015)

  38. Trovalusci, P., Laur De Bellis, M., Ostoja-Starzewski, M., et al.: Particulate random composites homogenized as micropolar materials. Meccanica 49, 2719–2727 (2014)

  39. Mosby, M., Matous, K.: Computational homogenization at extreme scales. Extreme Mech. Lett. 6, 68–74 (2016)

    Article  Google Scholar 

  40. Aboudi, J.: A continuum theory for fiber-reinforced elasticviscoplastic composites. Int. Eng. Sci. 20, 605–621 (1982)

    Article  MATH  Google Scholar 

  41. Ghosh, S., Moorthy, S.: Elastic-plastic analysis of heterogeneous microstructures using the voronoi cell finite element method. Comput Meth. Appl. Mech. Eng. 121(1–4), 373–409 (1995)

    Article  MATH  Google Scholar 

  42. Dvorak, G.J.: Transformation field analysis of inelastic composite materials. Proc. R Soc. Lond A 437, 311–327 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  43. Fritzen, F., Leuschner, M.: Reduced basis hybrid computational homogenization based on a mixed incremental formulation. Comput. Methods Appl. Mech. Eng. 260, 143–154 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Moulinec, H., Suquet, P.: A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Methods Appl. Mech. Eng. 157, 69–94 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. Oliver, J., Caicedo, M., Huespe, A.E., et al.: Reduced order modeling strategies for computational multiscale facture. Comput. Methods Appl. Mech. Eng. 313(1), 560–595 (2017)

    Article  MATH  Google Scholar 

  46. Fritzen, F., Böhlke, T.: Reduced basis homogenization of viscoelastic composites. Compos. Sci. Technol. 76, 84–91 (2013)

    Article  Google Scholar 

  47. Zhang, S., Oskay, C.: Reduced order variational multiscale enrichment method for thermo-mechanical problems. Comput. Mech. 59(6), 887–907 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Bhattacharjee, S., Matouš, K.: A nonlinear manifold-based reduced order model for multiscale analysis of heterogeneous hyperelastic materials. J. Comput. Phys. 313, 635–653 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  49. Kamiński, M., Figiel, Ł: Effective elastoplastic properties of the periodic composites. Comput. Math. Sci. 22(3–4), 221–239 (2001)

    Article  Google Scholar 

  50. Yuan, Z., Fish, J.: Multiple scale eigendeformation-based reduced order homogenization. Comput. Methods Appl. Mech. Engrg. 198, 2016–2038 (2009a)

    Article  MATH  Google Scholar 

  51. Yuan, Z., Fish, J.: Hierarchical model reduction at multiple scales. Int. J. Numer. Meth. Engng. 79, 314–339 (2009b)

    Article  MathSciNet  MATH  Google Scholar 

  52. Fish, J., Yang, Z.Q., Yuan, Z.F.: A second-order reduced asymptotic homogenization approach for nonlinear periodic heterogeneous materials. Int. J. Numer. Meth. Eng. 119, 469–489 (2019)

    Article  MathSciNet  Google Scholar 

  53. Yu, Y., Cui, J.Z., Han, F.: An effective computer generation method for the composites with random distribution of large numbers of heterogeneous grains. Compos. Sci. Technol. 68, 2543–2550 (2008)

    Article  Google Scholar 

  54. Li, Y.Y., Cui, J.Z.: The multiscale computational method for mechanics parameters of the materials with random distribution of multiscale grains. Compos. Sci. Technol. 65, 1447–1458 (2005)

    Article  Google Scholar 

  55. Xu, M.: A Study on Nonlinear Constitutive Law and FEA of Rubber-like Hyperelastic Materials, Beihang University (2002)

  56. Smith, J.C.: Experimental values for the elastic constants of a particulate-filled glassy polymer. J. Res. NBS 80A, 45–49 (1976)

    Article  Google Scholar 

  57. Richard, T.G.: The mechanical behavior of a solid microsphere filled composite. J. Comp. Mat. 9, 108–113 (1975)

    Article  Google Scholar 

  58. Hobbs, D.W.: The dependence of the bulk modulus, Young’s modulus, creep, shrinkage and thermal expansion of concrete upon aggregate volume concentration. Matériaux et Construction 4(2), 107–114 (1971)

    Article  Google Scholar 

  59. Chou, T.W., Nomura, S., Taya, M.: A self-consistent approach to the elastic stiffness of short-fibre composites. J. Compos. Mater. 14, 178–188 (1980)

    Article  Google Scholar 

  60. Habibnejad-Korayem, M., Mahmudi, R., Poole, W.J.: Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles. Mater. Sci. Eng. A 519(1–2), 198–203 (2009)

    Article  Google Scholar 

  61. Goldman, N.L., Hutchinson, J.W.: Fully plastic crack problems: the center-cracked strip under plane strain. Int. J. Solids Struct. 11(5), 575–591 (1975)

    Article  MATH  Google Scholar 

  62. Hutchinson, J.W.: Plastic stress and strain fields at a crack tip. J. Mech. Phys. Solids 16(5), 337–342 (1968)

    Article  Google Scholar 

  63. Yuan, Z.: Multiscale Design System, [Ph.D Thesis], Rensselaer Polytechnic Institute. Troy, NY (2008)

Download references

Acknowledgement

This study was funded by the National Natural Science Foundation of China (Grant 11701123) and Fundamental Research Funds for the Central Universities (Grant HIT.NSRIF.2020017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiqiang Yang or Yizhi Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Executive Editor: Zi-Shun Liu

Appendices

Appendix A

Inserting Eqs. (3)–(5) into Eq. (1), and considering the coefficients of the same power for \(\xi\) yields

$$\begin{gathered} - \frac{\partial }{{\partial x_{j} }}\left\{ {L_{ijkl} (\frac{{\mathbf{x}}}{\xi },\omega )\varepsilon_{kl}^{\xi } \left[ {{\mathbf{u}}^{\xi } ({\mathbf{x}},\omega )} \right]} \right\}{ + }\frac{\partial }{{\partial x_{j} }}\left[ {L_{ijkl} (\frac{{\mathbf{x}}}{\xi },\omega )\mu_{kl}^{\xi } ({\mathbf{x}},\omega )} \right] \hfill \\ = - \xi^{ - 1} \frac{{\partial L_{ijkl} ({\mathbf{y}},\omega^{s} )}}{{\partial y_{j} }}\frac{1}{2}(\frac{{\partial u_{k}^{0} }}{{\partial x_{l} }} + \frac{{\partial u_{l}^{0} }}{{\partial x_{k} }}) - \xi^{ - 1} \frac{\partial }{{\partial y_{j} }}\left\{ {L_{ijkl} ({\mathbf{y}},\omega^{s} )\frac{1}{2}\left[ {\frac{{\partial H_{k}^{{\alpha_{1} m}} ({\mathbf{y}},\omega^{s} )}}{{\partial y_{l} }}} \right.} \right. \hfill \\ + \left. {\left. {\frac{{\partial H_{l}^{{\alpha_{1} m}} ({\mathbf{y}},\omega^{s} )}}{{\partial y_{k} }}} \right]} \right\}\frac{{\partial u_{m}^{0} }}{{\partial x_{{\alpha_{1} }} }} - \xi^{ - 1} \frac{\partial }{{\partial y_{j} }}\left[ {L_{ijkl} ({\mathbf{y}},\omega^{s} )\int_{\Theta } {h_{{k,y_{l} }}^{mn} ({\mathbf{y}},{\tilde{\mathbf{y}}},\omega^{s} )} \mu_{mn}^{f} ({\mathbf{x}},{\tilde{\mathbf{y}}},\omega^{s} ){\text{d}} \tilde{\Theta }} \right] \hfill \\ + \xi^{ - 1} \frac{\partial }{{\partial y_{j} }}\left[ {L_{ijmn} ({\mathbf{y}},\omega^{s} )\mu_{mn}^{f} ({\mathbf{x}},{\tilde{\mathbf{y}}},\omega^{s} )} \right] - \xi^{0} \left\{ {\frac{\partial }{{\partial y_{j} }}\left[ {L_{ijkl} ({\mathbf{y}},\omega^{s} )\frac{1}{2}(\frac{{\partial \Phi_{km}^{{\alpha_{1} \alpha_{2} }} ({\mathbf{y}},\omega^{s} )}}{{\partial y_{l} }}} \right.} \right. \hfill \\ + \left. {\frac{{\partial \Phi_{lm}^{{\alpha_{1} \alpha_{2} }} ({\mathbf{y}},\omega^{s} )}}{{\partial y_{k} }}} \right] + \frac{\partial }{{\partial y_{j} }}\left[ {L_{{ijk\alpha_{2} }} ({\mathbf{y}},\omega^{s} )H_{k}^{{\alpha_{1} m}} ({\mathbf{y}},\omega^{s} )} \right] + L_{{i\alpha_{1} m\alpha_{2} }} ({\mathbf{y}},\omega^{s} ) \hfill \\ + \left. {L_{{i\alpha_{1} kj}} ({\mathbf{y}},\omega^{s} )\frac{{\partial H_{k}^{{\alpha_{2} m}} ({\mathbf{y}},\omega^{s} )}}{{\partial y_{j} }}} \right\}\frac{{\partial^{2} u_{m}^{0} }}{{\partial x_{{\alpha_{1} }} \partial x_{{\alpha_{2} }} }} \hfill \\ - \frac{\partial }{{\partial y_{j} }}\left[ {L_{ijkl} ({\mathbf{y}},\omega^{s} )\int_{\Theta } {h_{k}^{mn} ({\mathbf{y}},{\tilde{\mathbf{y}}},\omega^{s} )} \mu_{{mn,x_{l} }}^{f} ({\mathbf{x}},{\tilde{\mathbf{y}}},\omega^{s} ){\text{d}} \tilde{\Theta }} \right] \hfill \\ - L_{ijkl} ({\mathbf{y}},\omega^{s} )\int_{\Theta } {h_{{k,y_{l} }}^{mn} ({\mathbf{y}},{\tilde{\mathbf{y}}},\omega^{s} )} \mu_{{mn,x_{j} }}^{f} ({\mathbf{x}},{\tilde{\mathbf{y}}},\omega^{s} ){\text{d}} \tilde{\Theta } + L_{ijkl} ({\mathbf{y}},\omega^{s} )\mu_{{kl,x_{j} }}^{f} ({\mathbf{x}},{\mathbf{y}},\omega^{s} ) \hfill \\ - \frac{\partial }{{\partial y_{j} }}\left[ {L_{ijkl} ({\mathbf{y}},\omega^{s} )\int_{\Theta } {\phi_{{kp,y_{l} }}^{mn} ({\mathbf{y}},{\tilde{\mathbf{y}}},\omega^{s} )} \mu_{{mn,x_{p} }}^{f} {\text{d}} \tilde{\Theta }} \right] + O(\xi ) = f_{i} ({\mathbf{x}}). \hfill \\ \end{gathered}$$
(A.1)

Next, comparing the coefficient of \(\xi^{0}\) on both sides of (A.1) and using the homogenization Eq. (13) yield to

$$\begin{gathered} - \frac{\partial }{{\partial y_{j} }}\left[ {L_{ijkl} ({\mathbf{y}},\omega^{s} )\frac{{\partial \Phi_{kp}^{mn} ({\mathbf{y}},\omega^{s} )}}{{\partial y_{l} }}} \right]\frac{{\partial \varepsilon_{mn}^{c} ({\mathbf{x}})}}{{\partial x_{p} }} \hfill \\ = - \frac{\partial }{{\partial x_{j} }}\left[ {\overline{L}_{ijkl} \frac{{\partial u_{k}^{0} ({\mathbf{x}})}}{{\partial x_{l} }}} \right] + \frac{\partial }{{\partial y_{j} }}\left[ {L_{ijkl} ({\mathbf{y}},\omega^{s} )H_{k}^{mn} ({\mathbf{y}},\omega^{s} )\frac{{\partial \varepsilon_{mn}^{c} ({\mathbf{x}})}}{{\partial x_{l} }}} \right] \hfill \\ + \frac{\partial }{{\partial x_{j} }}\left\{ {L_{ijkl} ({\mathbf{y}},\omega^{s} )\left[ {\frac{{\partial u_{k}^{0} ({\mathbf{x}})}}{{\partial x_{l} }} + \frac{{\partial H_{k}^{mn} ({\mathbf{y}},\omega^{s} )}}{{\partial y_{l} }}\varepsilon_{mn}^{c} ({\mathbf{x}})} \right]} \right\} \hfill \\ - \frac{{\partial \overline{A}_{ij} ({\mathbf{x}})}}{{\partial x_{j} }} + \frac{\partial }{{\partial y_{j} }}\left[ {L_{ijkl} ({\mathbf{y}},\omega^{s} )\int_{\Theta } {h_{k}^{mn} ({\mathbf{y}},{\tilde{\mathbf{y}}},\omega^{s} )} \mu_{{mn,x_{l} }}^{f} ({\mathbf{x}},{\tilde{\mathbf{y}}},\omega^{s} ){\text{d}} \tilde{\Theta }} \right] \hfill \\ + L_{ijkl} ({\mathbf{y}},\omega^{s} )\int_{\Theta } {h_{{k,y_{l} }}^{mn} ({\mathbf{y}},{\tilde{\mathbf{y}}},\omega^{s} )} \mu_{{mn,x_{j} }}^{f} ({\mathbf{x}},{\tilde{\mathbf{y}}},\omega^{s} ){\text{d}} \tilde{\Theta } \hfill \\ + \frac{\partial }{{\partial y_{j} }}\left[ {L_{ijkl} ({\mathbf{y}},\omega^{s} )\int_{\Theta } {\phi_{{kp,y_{l} }}^{mn} ({\mathbf{y}},{\tilde{\mathbf{y}}},\omega^{s} )} \mu_{{mn,x_{p} }}^{f} ({\mathbf{x}},{\tilde{\mathbf{y}}},\omega^{s} ){\text{d}} \tilde{\Theta }} \right] \\ - L_{ijkl} ({\mathbf{y}},\omega^{s} )\mu_{{kl,x_{j} }}^{f} ({\mathbf{x}},{\mathbf{y}},\omega^{s} ) \hfill \\ \end{gathered}$$
(A.2)

Appendix B

In this work, continuum damage mechanic with isotropic damage law is applied to model constitutive behaviors of microconstituents. By this method, the constitutive relations are described by

$$\sigma_{ij} = (1 - \omega_{{\text{ph}}} )L_{ijkl} \varepsilon_{kl} ,$$
(B.1)

where \(\omega_{ph} \in [0,1]\) is a damage state variable. Therefore, the partitioned eigenstrains are introduced by

$$\mu_{ij}^{(\alpha )} = \omega_{{\text{ph}}}^{(\alpha )} \varepsilon_{ij}^{(\alpha )} .$$
(B.2)

The damage state variables \(\omega_{{\text{ph}}}^{(\alpha )}\) are the piecewise-continuous functions of damage equivalent strains \(\kappa_{{\text{ph}}}^{(\alpha )}\). The evolutions of phase damage are introduced by

$$\omega_{{\text{ph}}}^{(\alpha )} = \left\{ \begin{gathered} 0,\;\;\;\;\;\;\;\;\;\kappa_{{\text{ph}}}^{(\alpha )} \le {}^{1}\kappa_{{\text{ph}}}^{(\alpha )} , \hfill \\ \Phi (\kappa_{{\text{ph}}}^{(\alpha )} ),\;\;\;\;{}^{1}\kappa_{{\text{ph}}}^{(\alpha )} < \kappa_{{\text{ph}}}^{(\alpha )} \le {}^{2}\kappa_{{\text{ph}}}^{(\alpha )} , \hfill \\ 1,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\kappa_{{\text{ph}}}^{(\alpha )} > {}^{2}\kappa_{{\text{ph}}}^{(\alpha )} ,\; \hfill \\ \end{gathered} \right.$$
(B.3)

where \({}^{1}\kappa_{{\text{ph}}}^{(\alpha )}\) and \({}^{2}\kappa_{{\text{ph}}}^{(\alpha )}\) are the parameters about the initial and fully damaged state, respectively. Also, we can refer to Ref. [63] for various \(\Phi (\kappa_{{\text{ph}}}^{(\alpha )} )\). The damage equivalent strain \(\kappa_{{\text{ph}}}^{(\alpha )}\) are supposed to be a function of the principal strain

$$\kappa_{{\text{ph}}}^{(\alpha )} (t) = \max \left[ {\sqrt {\sum\limits_{I = 1}^{3} {\langle \varepsilon_{I}^{(\alpha )} (\tau )\rangle^{2} } } ,\;\tau < t} \right],$$
(B.4)

where

$$\langle x\rangle = \left\{ \begin{gathered} x,\;\;\;\;\;x \ge 0, \hfill \\ Cx,\;\;\;x < 0, \hfill \\ \end{gathered} \right.$$
(B.5)

and C is the compression factor. \({}^{1}\kappa_{{\text{ph}}}^{(\alpha )}\) is determined by material strength S and stiffness E by

$${}^{1}\kappa_{{\text{ph}}}^{(\alpha )} = \frac{S}{E}.$$
(B.6)

According to the selection of damage evolution functions, \({}^{2}\kappa_{{\text{ph}}}^{(\alpha )}\) can be expressed in accordance with physical-based material parameters (E, S and G-the strain energies).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Sun, Y., Liu, Y. et al. Prediction on nonlinear mechanical performance of random particulate composites by a statistical second-order reduced multiscale approach. Acta Mech. Sin. 37, 570–588 (2021). https://doi.org/10.1007/s10409-020-01025-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-020-01025-3

Keywords

Navigation