Skip to main content
Log in

Probing the mechanosensitivity in cell adhesion and migration: Experiments and modeling

  • Review
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Cell adhesion and migration are basic physiological processes in living organisms. Cells can actively probe their mechanical micro-environment and respond to the external stimuli through cell adhesion. Cells need to move to the targeting place to perform function via cell migration. For adherent cells, cell migration is mediated by cell-matrix adhesion and cell-cell adhesion. Experimental approaches, especially at early stage of investigation, are indispensable to studies of cell mechanics when even qualitative behaviors of cell as well as fundamental factors in cell behaviors are unclear. Currently, there is increasingly accumulation of experimental data of measurement, thus a quantitative formulation of cell behaviors and the relationship among these fundamental factors are highly needed. This quantitative understanding should be crucial to tissue engineering and biomedical engineering when people want to accurately regulate or control cell behaviors from single cell level to tissue level. In this review, we will elaborate recent advances in the experimental and theoretical studies on cell adhesion and migration, with particular focuses laid on recent advances in experimental techniques and theoretical modeling, through which challenging problems in the cell mechanics are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Franz, C.M., Jones, G.E., Ridley, A.J.: Cell migration in development and disease. Dev. Cell. 2, 153–158 (2002)

    Article  Google Scholar 

  2. Martin, P.: Wound healing-Aiming for perfect skin regeneration. Science 276, 75–81 (1997)

    Article  Google Scholar 

  3. Friedl, P., Weigelin, B.: Interstitial leukocyte migration and immune function. Nature Immunology 9, 960–969 (2008)

    Article  Google Scholar 

  4. Friedl, P., Gilmour, D.: Collective cell migration in morphogenesis, regeneration and cancer. Nature Reviews Molecular Cell Biology 10, 445–457 (2009)

    Article  Google Scholar 

  5. Friedl, P., Wolf, K.: Tumour-cell invasion and migration: Diversity and escape mechanisms. Nature Reviews Cancer 3, 362–374 (2003)

    Article  Google Scholar 

  6. Balaban, N.Q., Schwarz, U.S., Riveline, D., et al.: Force and focal adhesion assembly: A close relationship studied using elastic micropatterned substrates. Nature Cell Biology 3, 466–472 (2001)

    Article  Google Scholar 

  7. Burton, K., Park, J.H., Taylor, D.L.: Keratocytes generate traction forces in two phases. Molecular Biology of the Cell 10, 3745–3769 (1999)

    Article  Google Scholar 

  8. Lock, J.G., Wehrle-Haller, B., Stromblad, S.: Cell-matrix adhesion complexes: Master control machinery of cell migration. Seminars in Cancer Biology 18, 65–76 (2008)

    Article  Google Scholar 

  9. Geiger, B., Bershadsky, A., Pankov, R., et al.: Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nature Reviews Molecular Cell Biology 2, 793–805 (2001)

    Article  Google Scholar 

  10. Bershadsky, A.D., Balaban, N.Q., Geiger, B.: Adhesiondependent cell mechanosensitivity. Annual Review of Cell and Developmental Biology 19, 677–695 (2003)

    Article  Google Scholar 

  11. Giannone, G., Dubin-Thaler, B.J., Rossier, O., et al.: Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 128, 561–575 (2007)

    Article  Google Scholar 

  12. Geiger, B., Bershadsky, A.: Assembly and mechanosensory function of focal contacts. Current Opinion in Cell Biology 13, 584–592 (2001)

    Article  Google Scholar 

  13. Zaidel-Bar, R., Cohen, M., Addadi, L., et al.: Hierarchical assembly of cell-matrix adhesion complexes. Biochemical Society Transactions 32, (2004)

  14. Cavalcanti-Adam, E.A., Volberg, T., Micoulet, A., et al.: Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophysical Journal 92, 2964–2974 (2007)

    Article  Google Scholar 

  15. Ji, B., Bao, G.: Cell and molecular biomechanics: Perspectives and challenges. ActaMechanica Solida Sinica 24 27–51 (2011)

    Google Scholar 

  16. Wang, J., Yao, J., Gao, H.: Specific adhesion of a soft elastic body on a wavy surface. Theor. Appl. Mech. Lett. 2, 014002 (2012)

    Article  Google Scholar 

  17. Feng, S., Liang, H.: A coarse grain model of microtubules. Theor. Appl. Mech. Lett. 2, 014006 (2012)

    Article  Google Scholar 

  18. Bershadsky, A., Kozlov, M., Geiger, B.: Adhesion-mediated mechanosensitivity: A time to experiment, and a time to theorize. Current Opinion in Cell Biology 18, 472–481 (2006)

    Article  Google Scholar 

  19. Peng, X., Huang, J., Xiong, C., et al.: Cell adhesion nucleation regulated by substrate stiffness: A Monte Carlo study. Journal of Biomechanics 45, 116–122 (2012)

    Article  Google Scholar 

  20. Geiger, B., Bershadsky, A.: Exploring the neighborhood: Adhesion-coupled cell mechanosensors. Cell 110, 139–142 (2002)

    Article  Google Scholar 

  21. Discher, D.E., Janmey, P., Wang, Y.L.: Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005)

    Article  Google Scholar 

  22. Rape, A.D., Guo, W.-H., Wang, Y.-L.: The regulation of traction force in relation to cell shape and focal adhesions. Biomaterials 32, 2043–2051 (2011)

    Article  Google Scholar 

  23. Elineni, K.K., Gallant, N.D.: Regulation of cell adhesion strength by peripheral focal adhesion distribution. Biophysical Journal 101, 2903–2911 (2011)

    Article  Google Scholar 

  24. Ji, B.: Editorial: Mechanics of biological and bio-inspired materials. Theor. Appl. Mech. Lett. 2, 014001 (2012)

    Article  Google Scholar 

  25. Zhang, Y., Zheng, Q.: Determination of volumetric elastic moduli of plant leaf cells based on pressure-volume curves. Theor. Appl. Mech. Lett. 2, 014003 (2012)

    Article  Google Scholar 

  26. Xie, W., Xu, G., Feng, X.: Self-assembly of lipids and nanoparticles in aqueous solution: Self-consistent field simulations. Theor. Appl. Mech. Lett. 2, 014004 (2012)

    Article  Google Scholar 

  27. Qin, Z., Buehler, M.J.: Mechanical properties of crosslinks controls failure mechanism of hierarchical intermediate filament networks. Theor. Appl. Mech. Lett. 2, 014005 (2012)

    Article  Google Scholar 

  28. Galbraith, C.G., Sheetz, M.P.: Forces on adhesive contacts affect cell function. Current Opinion in Cell Biology 10, 566–571 (1998)

    Article  Google Scholar 

  29. Pelham, R.J., Wang, Y.-l.: Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94, 13661–13665 (1997)

    Article  Google Scholar 

  30. Maniotis, A.J., Chen, C.S., Ingber, D.E.: Demonstration of mechanical connections between integrins cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proceedings of the National Academy of Sciences of the United States of America 94, 849–854 (1997)

    Article  Google Scholar 

  31. Chatzizisis, Y.S., Coskun, A.U., Jonas, M., et al.: Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling-Molecular, cellular, and vascular behavior. Journal of the American College of Cardiology 49, 2379–2393 (2007)

    Article  Google Scholar 

  32. Tsamis, A., Bothe, W., Kvitting, J.P., et al.: Active contraction of cardiac muscle: In vivo characterization of mechanical activation sequences in the beating heart. Journal of the Mechanical Behavior of Biomedical Materials 4, 1167–1176 (2011)

    Article  Google Scholar 

  33. Ochs, B.G., Muller-Horvat, C., Albrecht, D., et al.: Remodeling of articular cartilage and subchondral bone after bone grafting and matrix-associated autologous chondrocyte implantation for osteochondritis dissecans of the knee. American Journal of Sports Medicine 39, 764–773 (2011)

    Article  Google Scholar 

  34. Hillyard, S.D., Willumsen, N.J., Marrero, M.B.: Stretchactivated cation channel from larval bullfrog skin. Journal of Experimental Biology 213, 1782–1787 (2010)

    Article  Google Scholar 

  35. Polacheck, W.J., Charest, J.L., Kamm, R.D.: Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proceedings of the National Academy of Sciences of the United States of America 108, 11115–11120 (2011)

    Article  Google Scholar 

  36. Zarnitsyna, V.I., Zhu, C.: Adhesion frequency assay for in situ kinetics analysis of cross-junctional molecular interactions at the cell-cell interface. Journal of Visualized Experiments 57, e3519 (2011)

    Google Scholar 

  37. Long, M., Sato, M., Lim, C.T., et al.: Advances in experiments and modeling in micro-and nano-biomechanics: A mini review. Cellular and Molecular Bioengineering 4, 327–339 (2011)

    Article  Google Scholar 

  38. Adachi, T., Aonuma, Y., Tanaka, M., et al.: Calcium response in single osteocytes to locally applied mechanical stimulus: differences in cell process and cell body. J. Biomech. 42, 1989–1995 (2009)

    Article  Google Scholar 

  39. Byfield, F.J., Reen, R.K., Shentu, T.P., et al.: Endothelial actin and cell stiffness is modulated by substrate stiffness in 2D and 3D. J. Biomech. 42, 1114–1119 (2009)

    Article  Google Scholar 

  40. Brugues, J., Maugis, B., Casademunt, J., et al.: Dynamical organization of the cytoskeletal cortex probed by micropipette aspiration. Proceedings of the National Academy of Sciences of the United States of America 107, 15415–15420 (2010)

    Article  Google Scholar 

  41. Nagayama, K., Matsumoto, T.: Estimation of single stress fiber stiffness in cultured aortic smooth muscle cells under relaxed and contracted states: Its relation to dynamic rearrangement of stress fibers. Journal of Biomechanics 43, 1443–1449 (2010)

    Article  Google Scholar 

  42. Wu, D., Ganatos, P., Spray, D.C., et al.: On the electrophysiological response of bone cells using a Stokesian fluid stimulus probe for delivery of quantifiable localized picoNewton level forces. Journal of Biomechanics 44, 1702–1708 (2011)

    Article  Google Scholar 

  43. Huo, B., Lu, X.L., Costa, K.D., et al.: An ATP-dependent mechanism mediates intercellular calcium signaling in bone cell network under single cell nanoindentation. Cell Calcium 47, 234–241 (2010)

    Article  Google Scholar 

  44. Watanabe-Nakayama, T., Machida, S., Harada, I., et al.: Direct detection of cellular adaptation to local cyclic stretching at the single cell level by atomic force microscopy. Biophysical Journal 100, 564–572 (2011)

    Article  Google Scholar 

  45. Schillers, H., Walte, M., Urbanova, K., et al.: Real-time monitoring of cell elasticity reveals oscillating myosin activity. Biophysical Journal 99, 3639–3646 (2010)

    Article  Google Scholar 

  46. Huo, B., Lu, X.L., Guo, X.E.: Intercellular calcium wave propagation in linear and circuit-like bone cell networks. Philos. Transact. A Math. Phys. Eng. Sci. 368, 617–633 (2010)

    Article  Google Scholar 

  47. McKee, C.T., Raghunathan, V.K., Nealey, P.F., et al.: Topographic modulation of the orientation and shape of cell nuclei and their influence on the measured elastic modulus of epithelial cells. Biophysical Journal 101, 2139–2146 (2011)

    Article  Google Scholar 

  48. Sun, G.Y., Zhang, Y., Huo, B., et al.: Parametric analysis for monitoring 2D kinetics of receptor-ligand binding. Cellular and Molecular Bioengineering 2, 495–503 (2009)

    Article  Google Scholar 

  49. Zhang, X., Zhang, Y., Zheng, Y., et al.: Mechanical characteristics of human red blood cell membrane change due to C(60) nanoparticle infiltration. Physical Chemistry Chemical Physics 15, 2473–2481 (2013)

    Article  Google Scholar 

  50. Wang, K., Sun, D.: Influence of semiflexible structural features of actin cytoskeleton on cell stiffness based on actin microstructural modeling. Journal of Biomechanics 45, 1900–1908 (2012)

    Article  Google Scholar 

  51. Zhang, H., Kay, A., Forsyth, N.R., et al.: Gene expression of single human mesenchymal stem cell in response to fluid shear. J. Tissue Eng. 3, 2041731412451988 (2012)

    Google Scholar 

  52. Hayakawa, K., Tatsumi, H., Sokabe, M.: Actin stress fibers transmit and focus force to activate mechanosensitive channels. Journal of Cell Science 121, 496–503 (2008)

    Article  Google Scholar 

  53. Fabry, B., Klemm, A.H., Kienle, S., et al.: Focal adhesion kinase stabilizes the cytoskeleton. Biophysical Journal 101, 2131–2138 (2011)

    Article  Google Scholar 

  54. Huo, B., Lu, X.L., Hung, C.T., et al.: Fluid flow induced calcium response in bone cell network. Cellular and Molecular Bioengineering 1, 58–66 (2008)

    Article  Google Scholar 

  55. Wayman, A.M., Chen, W., McEver, R.P., et al.: Triphasic force dependence of E-selectin/ligand dissociation governs cell rolling under flow. Biophysical Journal 99, 1166–1174 (2010)

    Article  Google Scholar 

  56. Rossi, M., Lindken, R., Hierck, B.P., et al.: Tapered microfluidic chip for the study of biochemical and mechanical response at subcellular level of endothelial cells to shear flow. Lab on a Chip 9, 1403–1411 (2009)

    Article  Google Scholar 

  57. Gossett, D.R., Tse, H.T., Lee, S.A., et al.: Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proceedings of the National Academy of Sciences of the United States of America 109, 7630–7635 (2012)

    Article  Google Scholar 

  58. Tavana, H., Zamankhan, P., Christensen, P.J., et al.: Epithelium damage and protection during reopening of occluded airways in a physiologic microfluidic pulmonary airway model. Biomed Microdevices 13, 731–742 (2011)

    Article  Google Scholar 

  59. Rahimzadeh, J., Meng, F., Sachs, F., et al.: Real-time observation of flow-induced cytoskeletal stress in living cells. Am J. Physiol. Cell Physiol. 301, C646–C652 (2011)

    Article  Google Scholar 

  60. Landenberger, B., Hofemann, H., Wadle, S., et al.: Microfluidic sorting of arbitrary cells with dynamic optical tweezers. Lab on a Chip 12, 3177–3183 (2012)

    Article  Google Scholar 

  61. Jiang, C., Shao, L., Wang, Q., et al.: Repetitive mechanical stretching modulates transforming growth factor-beta induced collagen synthesis and apoptosis in human patellar tendon fibroblasts. Biochemistry and Cell Biology 90, 667–674 (2012)

    Article  Google Scholar 

  62. Rui, Y.F., Lui, P.P., Ni, M., et al.: Mechanical loading increased BMP-2 expression which promoted osteogenic differentiation of tendon-derived stem cells. Journal of Orthopaedic Research 29, 390–396 (2011)

    Article  Google Scholar 

  63. Kreja, L., Liedert, A., Schlenker, H., et al.: Effects of mechanical strain on human mesenchymal stem cells and ligament fibroblasts in a textured poly(L-lactide) scaffold for ligament tissue engineering. Journal of Materials Science. Materials in Medicine 23, 2575–2582 (2012)

    Article  Google Scholar 

  64. Kalson, N.S., Holmes, D.F., Herchenhan, A., et al.: Slow stretching that mimics embryonic growth rate stimulates structural and mechanical development of tendon-like tissue in vitro. Developmental Dynamics 240, 2520–2528 (2011)

    Article  Google Scholar 

  65. Yeatts, A.B., Fisher, J.P.: Bone tissue engineering bioreactors: Dynamic culture and the influence of shear stress. Bone 48, 171–181 (2011)

    Article  Google Scholar 

  66. Skardal, A., Sarker, S.F., Crabbe, A., et al.: The generation of 3-D tissue models based on hyaluronan hydrogel-coated microcarriers within a rotating wall vessel bioreactor. Biomaterials 31, 8426–8435 (2010)

    Article  Google Scholar 

  67. Hong, S.Y., Jeon, Y.M., Lee, H.J., et al.: Activation of RhoA and FAK induces ERK-mediated osteopontin expression in mechanical force-subjected periodontal ligament fibroblasts. Molecular and Cellular Biochemistry 335, 263–272 (2010)

    Article  Google Scholar 

  68. Monticone, M., Liu, Y., Pujic, N., et al.: Activation of nervous system development genes in bone marrow derived mesenchymal stem cells following spaceflight exposure. Journal of Cellular Biochemistry 111, 442–452 (2010)

    Article  Google Scholar 

  69. Tamma, R., Colaianni, G., Camerino, C., et al.: Microgravity during spaceflight directly affects in vitro osteoclastogenesis and bone resorption. FASEB J. 23, 2549–2554 (2009)

    Article  Google Scholar 

  70. Adachi, T., Aonuma, Y., Ito, S., et al.: Osteocyte calcium signaling response to bone matrix deformation. J. Biomech. 42, 2507–2512 (2009)

    Article  Google Scholar 

  71. Chan, M.E., Lu, X.L., Huo, B., et al.: A trabecular bone explant model of osteocyte-osteoblast co-culture for bone mechanobiology. Cell Mol. Bioeng. 2, 405–415 (2009)

    Article  Google Scholar 

  72. Zhou, X., Novotny, J.E., Wang, L.: Anatomic variations of the lacunar-canalicular system influence solute transport in bone. Bone 45, 704–710 (2009)

    Article  Google Scholar 

  73. Zhou, X., Novotny, J.E., Wang, L.: Modeling fluorescence recovery after photobleaching in loaded bone: Potential applications in measuring fluid and solute transport in the osteocytic lacunar-canalicular system. Ann. Biomed. Eng. 36, 1961–1977 (2008)

    Article  Google Scholar 

  74. Mitrossilis, D., Fouchard, J., Pereira, D., et al.: Real-time single-cell response to stiffness. Proceedings of the National Academy of Sciences of the United States of America 107, 16518–16523 (2010)

    Article  Google Scholar 

  75. Weng, S., Fu, J.: Synergistic regulation of cell function by matrix rigidity and adhesive pattern. Biomaterials 32, 9584–9593 (2011)

    Article  Google Scholar 

  76. Sen, S., Engler, A.J., Discher, D.E.: Matrix strains induced by cells: computing how far cells can feel. Cellular and Molecular Bioengineering 2, 39–48 (2009)

    Article  Google Scholar 

  77. Prager-Khoutorsky, M., Lichtenstein, A., Krishnan, R., et al.: Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing. Nature Cell Biology 13, 1457–1465 (2011)

    Article  Google Scholar 

  78. Leight, J.L., Wozniak, M.A., Chen, S., et al.: Matrix rigidity regulates a switch between TGF-beta1-induced apoptosis and epithelial-mesenchymal transition. Molecular Biology of the Cell 23, 781–791 (2012)

    Article  Google Scholar 

  79. Tse, J.R., Engler, A.J.: Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS ONE 6, e15978 (2011)

    Article  Google Scholar 

  80. Folkman, J., Moscona, A.: Role of cell shape in growth control. Nature 273, 345–349 (1978)

    Article  Google Scholar 

  81. Ingber, D.E.: Fibronectin controls capillary endothelial cell growth by modulating cell shape. Proceedings of the National Academy of Sciences of the United States of America 87, 3579–3583 (1990)

    Article  Google Scholar 

  82. Chen, C.S., Mrksich, M., Huang, S., et al.: Geometric control of cell life and death. Science 276, 1425–1428 (1997)

    Article  Google Scholar 

  83. Chen, C.S., Mrksich, M., Huang, S., et al.: Micropatterned surfaces for control of cell shape, position, and function. Biotechnol Prog 14, 356–363 (1998)

    Article  Google Scholar 

  84. Yan, C., Sun, J., Ding, J.: Critical areas of cell adhesion on micropatterned surfaces. Biomaterials 32, 3931–3938 (2011)

    Article  Google Scholar 

  85. Oezkucur, N., Richter, E., Wetzel, C., et al.: Biological relevance of ion energy in-performance of human endothelial cells on ion-implanted flexible polyurethane surfaces. Journal of Biomedical Materials Research Part A 93A, 258–268 (2010)

    Google Scholar 

  86. Brunetti, V., Maiorano, G., Rizzello, L., et al.: Neurons sense nanoscale roughness with nanometer sensitivity. Proceedings of the National Academy of Sciences of the United States of America 107, 6264–6269 (2010)

    Article  Google Scholar 

  87. Liu, J., Tan, Y., Zhang, H., et al.: Soft fibrin gels promote selection and growth of tumorigenic cells. Nature Materials 11, 734–741 (2012)

    Article  Google Scholar 

  88. Aubin, H., Nichol, J.W., Hutson, C.B., et al.: Directed 3D cell alignment and elongation in microengineered hydrogels Biomaterials 31, 6941–6951 (2010)

    Article  Google Scholar 

  89. Huang, C.P., Lu, J., Seon, H., et al.: Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Lab on a Chip 9, 1740–1748 (2009)

    Article  Google Scholar 

  90. Tan, J.L., Tien, J., Pirone, D.M., et al.: From the Cover: Cells lying on a bed of microneedles: An approach to isolatemechanical force. Proceedings of the National Academy of Sciences 100, 1484–1489 (2003)

    Article  Google Scholar 

  91. Stricker, J., Aratyn-Schaus, Y., Oakes, P.W., et al.: Spatiotemporal constraints on the force-dependent growth of focal adhesions. Biophysical Journal 100, 2883–2893 (2011)

    Article  Google Scholar 

  92. Pompe, T., Kaufmann, M., Kasimir, M., et al.: Frictioncontrolled traction force in cell adhesion. Biophysical Journal 101, 1863–1870 (2011)

    Article  Google Scholar 

  93. Ricart, B.G., Yang, M.T., Hunter, C.A., et al.: Measuring traction forces of motile dendritic cells on micropost arrays. Biophysical Journal 101, 2620–2628 (2011)

    Article  Google Scholar 

  94. Lichtenstein, M.P., Madrigal, J.L., Pujol, A., et al.: JNK/ERK/FAK mediate promigratory actions of basic fibroblast growth factor in astrocytes via CCL2 and COX2. Neurosignals 20, 86–102 (2012)

    Article  Google Scholar 

  95. Trost, A., Desch, P., Wally, V., et al.: Aberrant heterodimerization of keratin 16 with keratin 6A in HaCaT keratinocytes results in diminished cellular migration. Mechanisms of Ageing and Development 131, 346–353 (2010)

    Article  Google Scholar 

  96. Rasanen, K., Vaheri, A.: Proliferation and motility of HaCaT keratinocyte derivatives is enhanced by fibroblast nemosis. Experimental Cell Research 316, 1739–1747 (2010)

    Article  Google Scholar 

  97. Kioka, N., Ito, T., Yamashita, H., et al.: Crucial role of vinexin for keratinocyte migration in vitro and epidermal wound healing in vivo. Experimental Cell Research 316, 1728–1738 (2010)

    Article  Google Scholar 

  98. Yu, Y., Kuebler, J., Groos, S., et al.: Carbon dioxide modifies the morphology and function of mesothelial cells and facilitates transepithelial neuroblastoma cell migration. Pediatr. Surg. Int. 26, 29–36 (2010)

    Article  Google Scholar 

  99. Lee, Y.C., Lin, H.H., Hsu, C.H., et al.: Inhibitory effects of andrographolide on migration and invasion in human non-small cell lung cancer A549 cells via down-regulation of PI3K/Akt signaling pathway. European Journal of Pharmacology 632, 23–32 (2010)

    Article  Google Scholar 

  100. Chen, C.S., Alonso, J.L., Ostuni, E., et al.: Cell shape provides global control of focal adhesion assembly. Biochemical and Biophysical Research Communications 307, 355–361 (2003)

    Article  Google Scholar 

  101. Humphries, J.D., Wang, P., Streuli, C., et al.: Vinculin controls focal adhesion formation by direct interactions with talin and actin. The Journal of Cell Biology 179, 1043–1057 (2007)

    Article  Google Scholar 

  102. Kong, D., Ji, B.H., Dai, L.H.: Stabilizing to disruptive transition of focal adhesion response to mechanical forces. Journal of Biomechanics 43, 2524–2529 (2010)

    Article  Google Scholar 

  103. Zhu, C., Bao, G., Wang, N.: Cell mechanics: Mechanical response, cell adhesion, and molecular deformation. Annual Review of Biomedical Engineering 2, 189–226 (2000)

    Article  Google Scholar 

  104. Evans, E.A.: Detailed mechanics of membrane-membrane adhesion and separation. I. Continuum of molecular crossbridges. Biophysical Journal 48, 175–183 (1985)

    Article  Google Scholar 

  105. Ward, M.D., Hammer, D.A.: A theoretical analysis for the effect of focal contact formation on cell-substrate attachment strength. Biophysical Journal 64, 936–959 (1993)

    Article  Google Scholar 

  106. Kong, D., Ji, B., Dai, L.: Nonlinear mechanical modeling of cell adhesion. Journal of Theoretical Biology 250, 75–84 (2008)

    Article  MathSciNet  Google Scholar 

  107. Chen, S., Gao, H.: Non-slipping adhesive contact of an elastic cylinder on stretched substrates. Proceedings of the Royal Society A 462, 211–228 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  108. Zhu, C.: Kinetics and mechanics of cell adhesion. Journal of Biomechanics 33, 23–33 (2000)

    Article  Google Scholar 

  109. Marshall, B.T., Long, M., Piper, J.W., et al.: Direct observation of catch bonds involving cell-adhesion molecules. Nature 423, 190–193 (2003)

    Article  Google Scholar 

  110. Kong, D., Ji, B., Dai, L.: Stability of adhesion clusters and cell reorientation under lateral cyclic tension. Biophysical Journal 95, 4034–4044 (2008)

    Article  Google Scholar 

  111. Riveline, D., Zamir, E., Balaban, N.Q., et al.: Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent Mechanism. Journal of Cell Biology 153, 1175–1186 (2001)

    Article  Google Scholar 

  112. Kaunas, R., Nguyen, P., Usami, S., et al.: From The Cover: Cooperative effects of Rho and mechanical stretch on stress fiber organization. Proceedings of the National Academy of Sciences of the United States of America 102, 15895–15900 (2005)

    Article  Google Scholar 

  113. Jungbauer, S., Gao, H., Spatz, J.P., et al.: Two characteristic regimes in frequency-dependent dynamic reorientation of fibroblasts on cyclically stretched substrates. Biophys Journal 95, 3470–3478 (2008)

    Article  Google Scholar 

  114. Nicolas, A., Geiger, B., Safran, S.A.: Cell mechanosensitivity controls the anisotropy of focal adhesions Proceedings of the National Academy of Sciences 101, 12520–12525 (2004)

    Article  Google Scholar 

  115. Shemesh, T., Geiger, B., Bershadsky, A.D., et al.: Focal adhesions as mechanosensors: A physical mechanism. Proceedings of the National Academy of Sciences of the United States of America 102, 12383–12388 (2005)

    Article  Google Scholar 

  116. Dartsch, P., Hammerle, H.: Orientation response of arterial smooth muscle cells to mechanical stimulation. European Journal of Cell Biology 41, 339–346 (1986)

    Google Scholar 

  117. Neidlinger-Wilke, C., Grood, E.S., Wang, J.H.C., et al.: Cell alignment is induced by cyclic changes in cell length: Studies of cells grown in cyclically stretched substrates. Journal of Orthopaedic Research 19, 286–293 (2001)

    Article  Google Scholar 

  118. Wang, H.C., Ip, W., Boissy, R., et al.: Cell orientation response to cyclically deformed substrates: Experimental validation of a cell model. Journal of Biomechanics 28, 1543–1552 (1995)

    Article  Google Scholar 

  119. De, R., Zemel, A., Safran, S.A.: Dynamics of cell orientation. Nature Physics 3, 655–659 (2007)

    Article  Google Scholar 

  120. Qian, J., Wang, J., Gao, H.: Lifetime and strength of adhesive molecular bond clusters between elastic media. Langmuir 24, 1262–1270 (2008)

    Article  Google Scholar 

  121. Ji, B., Kong, D., Dai, L.H.: Dynamics of adhesion cluster and cell reorientation under lateral cyclic loading. Biorheology 45, 96–97 (2008)

    Google Scholar 

  122. Ji, B., Kong, D., Dai, L.: Modeling of stability of adhesion clusters and cell reorientation under lateral dynamics load. Biophysical Journal 96, 523a (2009)

    Article  Google Scholar 

  123. Zhong, Y., He, S., Ji, B.: Mechanicsin mechanosensitivity of cell adhesion and its roles in cell migration. International Journal of Computational Materials Science and Engineering 1, 1250032 (2012)

    Article  Google Scholar 

  124. Liu, B., Qu, M.-J., Qin, K.-R., et al.: Role of cyclic strain frequency in regulating the alignment of vascular smooth muscle cells in vitro. Biophys Journal 94, 1497–1507 (2008)

    Article  Google Scholar 

  125. Kaunas, R., Hsu, H.-J.: A kinematic model of stretch-induced stress fiber turnover and reorientation. Journal of Theoretical Biology 257, 320–330 (2009)

    Article  MathSciNet  Google Scholar 

  126. Zhong, Y., Kong, D., Dai, L., et al.: Frequency-dependent focal adhesion instability and cell reorientation under cyclic substrate stretching. Cellular and Molecular Bioengineering 4, 442–456 (2011)

    Article  Google Scholar 

  127. Zaidel-Bar, R., Ballestrem, C., Kam, Z., et al.: Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. Journal of Cell Science 116, 4605–4613 (2003)

    Article  Google Scholar 

  128. Hamadi, A., Bouali, M., Dontenwill, M., et al.: Regulation of focal adhesion dynamics and disassembly by phosphorylation of FAK at tyrosine 397. Journal of Cell Science 118, 4415–4425 (2005)

    Article  Google Scholar 

  129. Dagmar, I., Iain, D.C.: Integrin activation-The importance of a positive feedback. Bulletin ofMathematical Biology 68, 945–956 (2006)

    Article  Google Scholar 

  130. Bell, G.I.: Models for the specific adhesion of cells to cells. Science 200, 618–627 (1978)

    Article  Google Scholar 

  131. Rubinstein, B., Jacobson, K., Mogilner, A.: Multiscale twodimensional modeling of a motile simple-shaped cell. Multiscale Modeling & Simulation 3, 413–439 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  132. Mogilner, A.: Mathematics of cell motility: Have we got its number? Journal of Mathematical Biology 58, 105–134 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  133. Lan, Y., Papoian, G.A.: The stochastic dynamics of filopodial growth. Biophysical Journal 94, 3839–3852 (2008)

    Article  Google Scholar 

  134. Dokukina, I.V., Gracheva, M.E.: A model of fibroblast motility on substrates with different rigidities. Biophysical Journal 98, 2794–2803 (2010)

    Article  Google Scholar 

  135. Sarvestani, A.S., Jabbari, E.: Modeling the kinetics of cell membrane spreading on substrates with ligand density gradient. Journal of Biomechanics 41, 921–925 (2008)

    Article  Google Scholar 

  136. Harland, B., Walcott, S., Sun, S.X.: Adhesion dynamics and durotaxis in migrating cells. Physical Biology 8, 015011 (2011)

    Article  Google Scholar 

  137. Zhong, Y., Ji, B.: Impact of cell shape on cell migration behavior on elastic substrate. Biofabrication 5, 015011 (2013)

    Article  Google Scholar 

  138. Soltysova, A., Altanerova, V., Altaner, C.: Cancer stem cells. Neoplasma 52, 435–440 (2005)

    Google Scholar 

  139. Engler, A.J., Sen, S., Sweeney, H.L., et al.: Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)

    Article  Google Scholar 

  140. Du, J., Chen, X., Liang, X., et al.: Integrin activation and internalization on soft ECMas a mechanism of induction of stem cell differentiation by ECM elasticity. Proceedings of the National Academy of Sciences of the United States of America 108, 9466–9471 (2011)

    Article  Google Scholar 

  141. Guilak, F., Cohen, D.M., Estes, B.T., et al.: Control of stem cell fate by physical interactions with the extracellular matrix. Stem Cell 5, 17–26 (2009)

    Google Scholar 

  142. Holtzer, H., Abbott, J., Lash, J., et al.: The loss of phenotypic traits by differentiated cells in vitro, I. Dedifferentiation of cartilage cells. Proceedings of the National Academy of Sciences of the United States of America 46, 1533–1542 (1960)

    Article  Google Scholar 

  143. Abbott, J., Holtzer, H.: The loss of phenotypic traits by differentiated cells. The reversible behavior of chondrocytes in primary cultures. Journal of Cell Biology 28, 473–487 (1966)

    Article  Google Scholar 

  144. Hoben, G.M., Koay, E.J., Athanasiou, K.A.: Fibrochondrogenesis in two embryonic stem cell lines: Effects of differentiation timelines. Stem Cells 26, 422–430 (2008)

    Article  Google Scholar 

  145. Li, Z.H., Sun, S.J., Long, M.: Proliferation, differentiation, and migration of rat bone marrow mesenchymal stem cells on micropatterned substrate J. Med. Biomech. 24, 256–262 (2009)

    Google Scholar 

  146. Guvendiren, M., Burdick, J.A.: The control of stem cell morphology and differentiation by hydrogel surface wrinkles. Biomaterials 31, 6511–6518 (2010)

    Article  Google Scholar 

  147. Thomas, C.H., Collier, J.H., Sfeir, C.S., et al.: Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc. Natl. Acad. Sci. U.S.A. 99, 1972–1977 (2002)

    Article  Google Scholar 

  148. Connelly, J.T., Gautrot, J.E., Trappmann, B., et al.: Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nature Cell Biology 12, 711–718 (2010)

    Article  Google Scholar 

  149. Singhvi, R., Kumar, A., Lopez, G.P., et al.: Engineering cell shape and function. Science 264, 696–698 (1994)

    Article  Google Scholar 

  150. Born, A.K., Rottmar, M., Lischer, S., et al.: Correlating cell architecture with osteogenesis: First steps towards live single cell monitoring. European Cells and Materials 18, 49–62 (2009)

    Google Scholar 

  151. Watt, F.M., Jordan, P.W., O’Neill, C.H.: Cell shape controls terminal differentiation of human epidermal keratinocytes. Proc. Natl. Acad. Sci. U.S.A. 85, 5576–5580 (1988)

    Article  Google Scholar 

  152. McBeath, R., Pirone, D.M., Nelson, C.M., et al.: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004)

    Article  Google Scholar 

  153. Song, W., Kawazoe, N., Chen, G.P.: Dependence of spreading and differentiation of mesenchymal stem cells on micropatterned surface area. Journal of Nanomaterials 2011, 1–9 (2011)

    Article  Google Scholar 

  154. Gao, L., McBeath, R., Chen, C.S.: Stem cell shape regulates a chondrogenic versus myogenic fate through Rac1 and Ncadherin. Stem. Cells 28, 564–572 (2010)

    Google Scholar 

  155. McBeath, R., Pirone, D.M., Nelson, C.M., et al.: Cell shape, cytoskeletal tension, and rhoa regulate stem cell lineage commitment. Developmental Cell 6, 483–495 (2004)

    Article  Google Scholar 

  156. Kearney, E.M., Prendergast, P.J., Campbell, V.A.: Mechanisms of strain-mediated mesenchymal stem cell apoptosis. Journal of Biomechanical Engineering 130, 061004 (2008)

    Article  Google Scholar 

  157. Li, L., Neaves, W.B.: Normal stem cells and cancer stem cells: The niche matters. Cancer Research 66, 4553–4557 (2006)

    Article  Google Scholar 

  158. Watt, F.M., Hogan, B.L.: Out of Eden: Stem cells and their niches. Science 287, 1427–1430 (2000)

    Article  Google Scholar 

  159. Fuchs, E., Tumbar, T., Guasch, G.: Socializing with the neighbors: Stem cells and their niche. Cell 116, 769–778 (2004)

    Article  Google Scholar 

  160. Song, X., Xie, T.: DE-cadherin-mediated cell adhesion is essential for maintaining somatic stem cells in the Drosophila ovary. Proceedings of the National Academy of Sciences of the United States of America 99, 14813–14818 (2002)

    Article  Google Scholar 

  161. Lowry, W.E., Blanpain, C., Nowak, J.A., et al.: Defining the impact of beta-catenin/Tcf transactivation on epithelial stem cells. Genes and Development 19, 1596–1611 (2005)

    Article  Google Scholar 

  162. Jensen, U.B., Lowell, S., Watt, F.M.: The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: A new view based on whole-mount labelling and lineage analysis. Development (Cambridge, England) 126, 2409–2418 (1999)

    Google Scholar 

  163. Zhu, A.J., Haase, I., Watt, F.M.: Signaling via β1 integrins and mitogen-activated protein kinase determines human epidermal stem cell fate in vitro. Proceedings of the National Academy of Sciences of the United States of America 96, 6728–6733 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bao-Hua Ji or Bo Huo.

Additional information

The project was supported by the National Natural Science Foundation of China (11221202 and 11025208) and the State Key Laboratory of Explosive Science and Technology of Beijing Institute of Technology (YBKT12-05).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, BH., Huo, B. Probing the mechanosensitivity in cell adhesion and migration: Experiments and modeling. Acta Mech Sin 29, 469–484 (2013). https://doi.org/10.1007/s10409-013-0065-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-013-0065-7

Keywords

Navigation