Skip to main content
Log in

Linear stability of plane creeping Couette flow for Burgers fluid

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

It is well known that plane creeping Couette flow of UCM and Oldroy-B fluids are linearly stable. However, for Burges fluid, which includes UCM and Oldroyd-B fluids as special cases, unstable modes are detected in the present work. The wave speed, critical parameters and perturbation mode are studied for neutral waves. Energy analysis shows that the sustaining of perturbation energy in Poiseuille flow and Couette flow is completely different. At low Reynolds number limit, analytical solutions are obtained for simplified perturbation equations. The essential difference between Burgers fluid and Oldroyd-B fluid is revealed to be the fact that neutral mode exists only in the former.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gorodtsov, V.A., Leonov, A.I.: On a linear instability of a plane parallel Couette flow of viscoelastic fluid. J. Appl. Math. Mech. 31, 310–319 (1967)

    Article  MATH  Google Scholar 

  2. Lee, K.C., Finlayson, B.A.: Stability of plane Poiseuille and Couette flow of a Maxwell fluid. J. Non-Newton. Fluid Mech. 21, 65–78 (1986)

    Article  MATH  Google Scholar 

  3. Renardy, M., Renardy, Y.: Linear stability of plane Couette flow of an upper convected Maxwell fluid. J. Non-Newton. Fluid Mech. 22, 23–33 (1986)

    Article  MATH  Google Scholar 

  4. Renardy, M.: A rigorous stability proof for plane Couette flow of an upper convected Maxwell fluid at zero Reynolds number. Euro. J.Mech. B 11, 511–516 (1992)

    MathSciNet  MATH  Google Scholar 

  5. Wilson, H.J., Renardy, M., Renardy, Y.: Structure of the spectrum in zero Reynolds number shear flow of the UCM and Oldroyd-B liquids. J. Non-Newton. Fluid Mech. 80, 251–268 (1999)

    Article  MATH  Google Scholar 

  6. Kupferman, R.: On the linear stability of plane Couette flow for an Oldroyd-B fluid and its numerical approximation. J. Non-Newton. Fluid Mech. 127, 169–190 (2005)

    Article  MATH  Google Scholar 

  7. Larson, R.M., Shaqfeh, S.G., Muller, S.J.: A purely elastic instability in Taylor-Couette flow. J. Fluid Mech. 218, 573–600 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Pakdel, P., McKinley, G.H.: Elastic instability and curved streamlines. Phys. Rev. Lett. 77, 2459–2462 (1996)

    Article  Google Scholar 

  9. Shaqfeh, S.G.: Purely elastic instabilities in viscometric flows. Annu. Rev. Fluid Mech. 28, 129–185 (1996)

    Article  MathSciNet  Google Scholar 

  10. Morozov, A.N., van Saarloos, W.: Subcritical finite-amplitude solutions for plane Couette flow of viscoelastic fluids. Phys. Rev. Lett. 95, 024501 (2005)

    Article  Google Scholar 

  11. Hoda. N., Jovanovic, M.R., Kumar, S.: Energy amplification in channel flows of viscoelastic fluids. J. Fluid Mech. 601, 407–424 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Quintanilla, R., Rajagopal, K.R.: On Burgers fluids. Math. Meth. Appl. Sci. 29, 2133–2147 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rumpker, G., Wolf, D.: Viscoelastic relaxation of a Burgers half-space: Implications for the interpretation of the Fennoscandian uplift. Geophys. J. Int. 124, 541–555 (1996)

    Article  Google Scholar 

  14. Chopra, P.N.: High-temperature transient creep in olivine rocks. Tectonophysics 279, 93–111 (1997)

    Article  Google Scholar 

  15. Cooper, R.F.: Seismic wave attenuation: Energy dissipation in viscoelastic crystalline solids. Rev. Mineral. Geochem. 51, 253–290 (2002)

    Article  Google Scholar 

  16. Wang, H.C., Thompson, D.G., Schoonover, J.R., et al.: DMAFTIR creep-recovery study of a poly (ester urethane) elastomer with molecular-level viscoelastic modeling. Macromolecules 34, 7084–7090 (2001)

    Article  Google Scholar 

  17. Yang, J.L., Zhang, Z., Schlarb, A.K., et al.: On the characterization of tensile creep resistance of polyamide 66 nanocomposites. Part II: Modeling and prediction of long-term performance. Polymer 47, 6745–6758 (2006)

    Article  Google Scholar 

  18. Banik, K., Karger-Kocsis, J., Abraham, T.: Flexural creep of all-polypropylene composites: Model analysis. Polym. Eng. Sci. 48, 941–948 (2008)

    Article  Google Scholar 

  19. Towler, B.W., Rupp, C.J., Cunningham, A.B., et al.: Viscoelastic properties of a mixed culture biofilm from rheometer creep analysis. Biofouling 19, 279–285 (2003)

    Article  Google Scholar 

  20. Towler, B.W., Cunningham, A.B., Stoodley, P, et al.: A model of fluid biofilm interaction using a burger material law. Biotechnol. Bioeng. 96, 259–271 (2007)

    Article  Google Scholar 

  21. Jena, R., Bhattacharya, S.: Viscoelastic characterization of rice gel. J. Texture Stud. 34, 349–360 (2003)

    Article  Google Scholar 

  22. Tovar, C.A., Cerdeirina, C.A., Romani, L., et al.: Viscoelasticity behavior of Arzua-Ulloa cheese. J. Texture Stud. 34, 115–129 (2003)

    Article  Google Scholar 

  23. Krishnan, J.M., Rajagopal, K.R.: Review of the uses and modeling of bitumen from ancient to modern times. Appl. Mech. Rev. 56, 149–214 (2003)

    Article  Google Scholar 

  24. Ahrens, M., Lampenscherf, S., Vaben, R., et al.: Sintering and creep processes in plasma-sprayed thermal barrier coatings. J. Therm. Spray. Techn. 13, 432–442 (2004)

    Article  Google Scholar 

  25. Cheng, Y.Q., Shimizu, N., Kimura, T.: The viscoelastic properties of soybean curd (tofu) as affected by soymilk concentration and type of coagulant. Int. J. Food Sci. Tech. 40, 385–390 (2005)

    Article  Google Scholar 

  26. Lentle, R.G., Hemar, Y., Hall, C.E.: Viscoelastic behaviour aids extrusion from and reabsorption of the liquid phase into the digesta plug: creep rheometry of hindgut digesta in the common brushtail possum Trichosurus vulpecula. J. Comp. Physiol. B 176, 469–475 (2006)

    Article  Google Scholar 

  27. Abbas, A., Masad, E., Papagiannakis, T., et al.: Micromechanical modeling of the viscoelastic behavior of asphalt mixtures using the discrete-element method. Int. J. Geomech. 7, 131–139 (2007)

    Article  Google Scholar 

  28. Henning, W.G., O’Connell, R.J., Sasselov, D.D.: Tidally heated terrestrial exoplanets: Viscoelastic response models. Astrophys. J. 707, 1000–1015 (2009)

    Article  Google Scholar 

  29. Ravindran, P., Krishnan, J.M., Rajagopal, K.R.: A note on the flow of a Burgers’ fluid in an orthogonal rheometer. Int. J. Eng. Sci. 42, 1973–1985 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hayat, T., Khan, S.B., Khan, M.: Influence of Hall current on the rotating flow of a Burgers’ fluid through a porous space. J. Porous Med. 11, 277–287 (2008)

    Article  Google Scholar 

  31. Fetecau, C., Hayat, T., Khan, M., et al.: A note on longitudinal oscillations of a generalized Burgers fluid in cylindrical domains. J. Non-Newton. Fluid Mech. 165, 350–361 (2010)

    Article  Google Scholar 

  32. Jamil. M., Fetecau, C.: Some exact solutions for rotating flows of a generalized Burgers’ fluid in cylindrical domains. J. Non-Newton. Fluid Mech. 165, 1700–1712 (2010)

    Article  Google Scholar 

  33. Khan, M., Malik, R., Fetecau, C., et al.: Exact solutions for the unsteady flow of a Burgers’ fluid between two sidewalls perpendicular to the plate. Chem. Eng. Commun. 197, 1367–1386 (2010)

    Article  Google Scholar 

  34. Tong, D.: Starting solutions for oscillating motions of a generalized Burgers’ fluid in cylindrical domains. Acta Mech. 214, 395–407 (2010)

    Article  MATH  Google Scholar 

  35. Hu, K.X., Peng, J., Zhu, K.Q.: The linear stability of plane Poiseuille flow of Burgers fluid at very low Reynolds numbers. J. Non-Newton. Fluid Mech. 167–168, 87–94 (2012)

    Article  Google Scholar 

  36. Porteus, K.C., Denn, M.M.: Linear stability of plane Poiseuille flow of viscoelastic liquids. Trans. Soc. Rheol. 16, 295–308 (1972)

    Article  Google Scholar 

  37. Rothenberger, M., McCoy, D.H., Denn, M.M.: Flow instability in polymer melt extrusion. Trans. Soc. Rheol. 17, 259–269 (1973)

    Article  Google Scholar 

  38. Ho, T.C., Denn, M.M.: Stability of plane Poiseuille flow of a highly elastic liquid. J. Non-Newton. Fluid Mech. 3, 179–195 (1977)

    Article  Google Scholar 

  39. Sureshkumar, R., Beris, A.: Linear stability analysis of viscoelastic Poiseuille flow using an Arnoldi-based orthogonalization algorithm. J. Non-Newton. Fluid Mech. 56, 151–182 (1995)

    Article  Google Scholar 

  40. Jamil, M., Khan, N.A.: Axial Couette flow of an Oldroyd-B fluid in an annulus. Theor. Appl. Mech. Lett. 2, 012001 (2012)

    Article  Google Scholar 

  41. Schmid, P.J., Henningson, D.S.: Stability and Transition in Shear Flows, Springer, New York (2001)

    Book  MATH  Google Scholar 

  42. Lapasin, R., Pricl, S., Sirtori, V., et al.: Viscoelastic properties of solder pastes. J. Electron. Mater. 27, 138–148 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Xin Hu.

Additional information

The project was supported by the National Natural Science Foundation of China (11172152).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, KX., Peng, J. & Zhu, KQ. Linear stability of plane creeping Couette flow for Burgers fluid. Acta Mech Sin 29, 12–23 (2013). https://doi.org/10.1007/s10409-013-0007-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-013-0007-4

Keywords

Navigation