Skip to main content
Log in

Pulmonale Hypertonie

Definition und diagnostische Klassifikation

Pulmonary hypertension

Definition and diagnostic classification

  • Leitthema
  • Published:
Der Pneumologe Aims and scope

Zusammenfassung

Die erste klinische Klassifikation und hämodynamische Definition der pulmonalen Hypertonie (PH) wurde 1973 in Genf beschlossen. Die diagnostische Klassifikation in eine primäre und sekundäre pulmonale Hypertonie wurde dann in Evian 1998 geändert, indem 5 Gruppen eingeführt und die Gruppe 1 mit dem Begriff der pulmonal-arteriellen Hypertonie (PAH) besetzt wurde. Diese Einteilung wurde bei den folgenden Kongressen in Venedig 2003 und Dana Point 2008 mit einigen Adaptationen beibehalten.

Die erste hämodynamische Definition von 1973 sprach von einer PH, wenn der mittlere pulmonale Druck (PAP) 25 mmHg in Ruhe oder 30 mmHg bei Belastung überschreitet. In Dana Point wurde diese Definition in Frage gestellt. Die Analyse der hämodynamischen Daten von gesunden Probanden führte zu der Schlussfolgerung, dass der PAP 14,0±3,3 mmHg beträgt und unabhängig vom Geschlecht und nur minimal von Alter und Körperposition abhängig ist. Dagegen ist der PAP unter Belastung stark vom Alter und vom Belastungsgrad abhängig. Daher wird der normale PAP in den aktuellen Leitlinien mit 8–20 mmHg angegeben und eine PH wird durch einen PAP ≥25 mmHg definiert. Der Belastungsteil der Definition wurde aufgegeben.

Abstract

The first clinical classification and hemodynamic definition of pulmonary hypertension (PH) was introduced at a WHO meeting in Geneva in 1973. The diagnostic classification was updated at the world conference in Evian, 1998, introducing 5 clinical groups instead of the original groups of primary and secondary PH. Although changes have been made, the basic structure of this classification was adopted in the following world congresses in Venice 2003 and Dana Point 2008.

Since 1973, PH was hemodynamically defined as mean pulmonary arterial pressure (PAP) >25 mmHg at rest or >30 mmHg during exercise. In 2008, the hemodynamic definition was discussed again. The analysis of the published data, based on invasive measurements in healthy individuals, suggested that resting PAP is 14.0±3.3 mmHg and independent of gender and is only mildly influenced by posture and age. During exercise, however, PAP is dependent on exercise level and age. Accordingly, the Dana Point statement defines the normal range of resting mean PAP between 8 and 20 mmHg and PH as resting mean PAP ≥25 mmHg. The exercise part of the old definition of PH was abandoned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2

Literatur

  1. Gurtner HP (1979) Pulmonary hypertension, „plexogenic pulmonary arteriopathy“ and the appetite depressant drug aminorex: post or propter? Bull Eur Physiopathol Respir 15:897–923

    CAS  PubMed  Google Scholar 

  2. Bass O, Gurtner HP (1973) Evolution of primary vascular pulmonary hypertension following ingestion of aminorex fumarate (Menocil). Preliminary communication. Schweiz Med Wochenschr 103:1794

    CAS  PubMed  Google Scholar 

  3. Hatano S, Strasser T (1975) Primary pulmonary hypertension: Report on a WHO meeting. Geneva, 15–17 October 1973

  4. World Health Organization (ed) (1961) Chronic cor pulmonale – report of an expert committee. World Health Organ Tech Rep Ser 213:1–36

    Google Scholar 

  5. Dresdale DT, Schultz M, Michtom RJ (1951) Primary pulmonary hypertension. I. Clinical and hemodynamic study. Am J Med 11:686–705

    Article  CAS  PubMed  Google Scholar 

  6. Ekelund LG, Holmgren A (1967) Central hemodynamics during exercise. Circ Res 20/21

    Google Scholar 

  7. Gloger K (1972) Die Altersabhängigkeit des Pulmonalarteriendruckes während stufenweise gesteigerter Ergometerarbeit. Z Kreislaufforsch 61:728–737

    CAS  PubMed  Google Scholar 

  8. Strandell T (1970) Pulmonary blood flow and pressure in old age: effect of body position, exercise and physical training. Respir Res 5:385

    Google Scholar 

  9. Milnor WR (1972) Pulmonary haemodynamics. In: Bergel DH (ed) Cardiovascular fluid dynamics. Academic Press, New York, London, pp 299–340

  10. Pengo V, Lensing AW, Prins MH et al (2004) Incidence of chronic thromboembolic pulmonary hypertension after pulmonary embolism. N Engl J Med 350:2257–2264

    Article  CAS  PubMed  Google Scholar 

  11. Lapa MS, Ferreira EV, Jardim C et al (2006) Clinical characteristics of pulmonary hypertension patients in two reference centers in the city of Sao Paulo. Rev Assoc Med Bras 52:139–143

    Article  PubMed  Google Scholar 

  12. Lapa M, Dias B, Jardim C et al (2009) Cardiopulmonary manifestations of hepatosplenic schistosomiasis. Circulation 119:1518–1523

    Article  PubMed  Google Scholar 

  13. Galiè N, Hoeper MM, Humbert M et al (2009) Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 30:2493–2537

    Article  PubMed  Google Scholar 

  14. Montani D, Achouh L, Dorfmuller P et al (2008) Pulmonary veno-occlusive disease: clinical, functional, radiologic, and hemodynamic characteristics and outcome of 24 cases confirmed by histology. Medicine (Baltimore) 87:220–233

    Google Scholar 

  15. Lantuejoul S, Sheppard MN, Corrin B et al (2006) Pulmonary veno-occlusive disease and pulmonary capillary hemangiomatosis: a clinicopathologic study of 35 cases. Am J Surg Pathol 30:850–857

    Article  PubMed  Google Scholar 

  16. Neuman Y, Kotliroff A, Bental T et al (2008) Pulmonary artery pressure and diastolic dysfunction in normal left ventricular systolic function. Int J Cardiol 127:174–178

    Article  PubMed  Google Scholar 

  17. Cottin V, Nunes H, Brillet PY et al (2005) Combined pulmonary fibrosis and emphysema: a distinct underrecognised entity. Eur Respir J 26:586–593

    Article  CAS  PubMed  Google Scholar 

  18. Cottin V, Le Pavec J, Prevot G et al (2010) Pulmonary hypertension in patients with combined pulmonary fibrosis and emphysema syndrome. Eur Respir J 35:105–111

    Article  CAS  PubMed  Google Scholar 

  19. Yigla M, Nakhoul F, Sabag A et al (2003) Pulmonary hypertension in patients with end-stage renal disease. Chest 123:1577–1582

    Article  PubMed  Google Scholar 

  20. Yigla M, Fruchter O, Aharonson D et al (2009) Pulmonary hypertension is an independent predictor of mortality in hemodialysis patients. Kidney Int 75:969–975

    Article  PubMed  Google Scholar 

  21. Issa N, Krowka MJ, Griffin MD et al (2008) Pulmonary hypertension is associated with reduced patient survival after kidney transplantation. Transplantation 86:1384–1388

    Article  PubMed  Google Scholar 

  22. Kovacs G, Berghold A, Scheidl S, Olschewski H (2009) Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J 34:888–894

    Article  CAS  PubMed  Google Scholar 

  23. Peacock AJ, Murphy NF, McMurray JJ et al (2007) An epidemiological study of pulmonary arterial hypertension. Eur Respir J 30:104–109

    Article  CAS  PubMed  Google Scholar 

  24. Humbert M, Sitbon O, Chaouat A et al (2006) Pulmonary arterial hypertension in France: results from a national registry. Am J Respir Crit Care Med 173:1023–1030

    Article  PubMed  Google Scholar 

  25. Kessler R, Faller M, Fourgaut G et al (1999) Predictive factors of hospitalization for acute exacerbation in a series of 64 patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 159:158–164

    CAS  PubMed  Google Scholar 

  26. Hamada K, Nagai S, Tanaka S et al (2007) Significance of pulmonary arterial pressure and diffusion capacity of the lung as prognosticator in patients with idiopathic pulmonary fibrosis. Chest 131:650–656

    Article  PubMed  Google Scholar 

  27. West JB (1998) Left ventricular filling pressures during exercise: a cardiological blind spot? Chest 113:1695–1697

    Article  CAS  PubMed  Google Scholar 

  28. Tolle JJ, Waxman AB, Van Horn TL et al (2008) Exercise-induced pulmonary arterial hypertension. Circulation 118:2183–2189

    Article  PubMed  Google Scholar 

  29. Alkotob ML, Soltani P, Sheatt MA et al (2006) Reduced exercise capacity and stress-induced pulmonary hypertension in patients with scleroderma. Chest 130:176–181

    Article  PubMed  Google Scholar 

  30. Collins N, Bastian B, Quiqueree L et al (2006) Abnormal pulmonary vascular responses in patients registered with a systemic autoimmunity database: Pulmonary hypertension assessment and screening evaluation using stress echocardiography (PHASE-I). Eur J Echocardiogr 7:439–446

    Article  PubMed  Google Scholar 

  31. Grunig E, Janssen B, Mereles D et al (2000) Abnormal pulmonary artery pressure response in asymptomatic carriers of primary pulmonary hypertension gene. Circulation 102:1145–1150

    CAS  PubMed  Google Scholar 

  32. Steen V, Chou M, Shanmugam V et al (2008) Exercise-induced pulmonary arterial hypertension in patients with systemic sclerosis. Chest 134:146–151

    Article  PubMed  Google Scholar 

  33. Callejas-Rubio JL, Moreno-Escobar E, Fuente PM de la et al (2008) Prevalence of exercise pulmonary arterial hypertension in scleroderma. J Rheumatol 35:1812–1816

    PubMed  Google Scholar 

  34. Pignone A, Mori F, Pieri F et al (2007) Exercise doppler echocardiography identifies preclinic asymptomatic pulmonary hypertension in systemic sclerosis. Ann N Y Acad Sci 1108:291–304

    Article  PubMed  Google Scholar 

  35. Kovacs G, Maier R, Aberer E et al (2010) Assessment of pulmonary arterial pressure during exercise in collagen vascular disease: Echocardiography versus right heart catheterisation (in press). Chest

  36. Condliffe R, Kiely DG, Peacock AJ et al (2009) Connective tissue disease-associated pulmonary arterial hypertension in the modern treatment era. Am J Respir Crit Care Med 179:151–157

    Article  PubMed  Google Scholar 

  37. Kovacs G, Maier R, Aberer E et al (2009) Borderline pulmonary arterial pressure is associated with decreased exercise capacity in scleroderma. Am J Respir Crit Care Med 180:881–886

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kovacs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovacs, G., Tröster, N., Scheidl, S. et al. Pulmonale Hypertonie. Pneumologe 7, 165–173 (2010). https://doi.org/10.1007/s10405-009-0377-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10405-009-0377-2

Schlüsselwörter

Keywords

Navigation