Skip to main content
Log in

Infrared laser-induced photothermal phase change for liquid actuation in microchannels

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Localized fluid manipulation in microfluidic device is a key operation to various on-chip analytical/synthetic applications. In this work, we demonstrated the localized fluid actuation in microchannels by the infrared laser-induced evaporation–condensation-coalescence photothermal phase change process. Visualized experiments were carried out to investigate the dynamic phase change process and accompanying interfacial behaviors. Effects of laser power, spot speed, channel structure and actuation distance were investigated. Results indicate the actuation speed can be tuned by the output laser power, and the flow direction in microchannels can be selected by the control of laser spot trajectory. Long distance actuation performance suggests that the flow speed decreases due to the increase of fluid volume and flow resistance. The photothermally induced phase change process provides the means of simple and efficient localized fluid manipulation with remarkable dynamic response and the ability of agile maneuver in microfluidic channels, which could be further applied in different application scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Al Nahas K, Cama J, Schaich M, Hammond K, Deshpande S, Dekker C, Ryadnov M, Keyser U (2019) A microfluidic platform for the characterisation of membrane active antimicrobials. Lab Chip 19:837–844

    Article  Google Scholar 

  • Bayareh M (2020) An updated review on particle separation in passive microfluidic devices. Chem Eng Process Process Intensif 153:107984

    Article  Google Scholar 

  • Biffi E, Piraino F, Pedrocchi A, Fiore GB, Ferrigno G, Redaelli A, Menegon A, Rasponi M (2012) A microfluidic platform for controlled biochemical stimulation of twin neuronal networks. Biomicrofluidics 6:024106

    Article  Google Scholar 

  • Boyd DA, Adleman JR, Goodwin DG, Psaltis D (2008) Chemical separations by bubble-assisted interphase mass-transfer. Anal Chem 80:2452–2456

    Article  Google Scholar 

  • Chen R, He X, Zhu X, Liao Q, An L, Wang Z, Li S (2016) Characteristics of the IR laser photothermally induced phase change in microchannels with different depths. Ind Eng Chem Res 55:8450–8459

    Article  Google Scholar 

  • Chen J, Loo JFC, Wang D, Zhang Y, Kong SK, Ho HP (2020) Thermal optofluidics: principles and applications. Adv Opt Mater 8:1900829

    Article  Google Scholar 

  • Crevillén AG, Hervás M, López MA, González MC, Escarpa A (2007) Real sample analysis on microfluidic devices. Talanta 74:342–357

    Article  Google Scholar 

  • Demello AJ (2006) Control and detection of chemical reactions in microfluidic systems. Nature 442:394–402

    Article  Google Scholar 

  • Duraiswamy S, Khan SA (2009) Droplet-based microfluidic synthesis of anisotropic metal nanocrystals. Small 5:2828–2834

    Article  Google Scholar 

  • Erickson D, Sinton D, Psaltis D (2011) Optofluidics for energy applications. Nat Photon 5:583

    Article  Google Scholar 

  • Fan X, White IM (2011) Optofluidic microsystems for chemical and biological analysis. Nat Photon 5:591

    Article  Google Scholar 

  • Fung CW, Chan SN, Wu AR (2020) Microfluidic single-cell analysis—toward integration and total on-chip analysis. Biomicrofluidics 14:021502

    Article  Google Scholar 

  • Govind G, Akhtar MJ (2019) Metamaterial-inspired microwave microfluidic sensor for glucose monitoring in aqueous solutions. IEEE Sens J 19:11900–11907

    Article  Google Scholar 

  • Hanasoge S, Hesketh PJ, Alexeev A (2018) Microfluidic pumping using artificial magnetic cilia. Microsyst Nanoeng 4:1–9

    Article  Google Scholar 

  • He X, Chen R, Liao Q, Wang H, Zhu X, Xu Q, Li S, Xiao S (2014) IR laser assisted photothermal condensation in a microchannel. Chem Eng Sci 119:288–294

    Article  Google Scholar 

  • He X, Chen R, Zhu X, Liao Q, Ye D, Zhang B, Jiao L, Wang Z, Lei Y (2018) Pulsating flow triggered by the laser induced phase change in microchannels with sawtooth-shaped baffles. Sens Actuators B Chem 260:1018–1024

    Article  Google Scholar 

  • He X, Chen R, Zhu X, Liao Q, Li S (2020) Laser assisted microfluidic membrane evaporator for sample crystallization separation. Sep Purif Technol 242:116817

    Article  Google Scholar 

  • Jung JH, Destgeer G, Park J, Ahmed H, Park K, Sung HJ (2018) Microfluidic flow switching via localized acoustic streaming controlled by surface acoustic waves. RSC Adv 8:3206–3212

    Article  Google Scholar 

  • Kjeang E, Djilali N, Sinton D (2009) Microfluidic fuel cells: a review. J Power Sources 186:353–369

    Article  Google Scholar 

  • Lee C-Y, Wang W-T, Liu C-C, Fu L-M (2016) Passive mixers in microfluidic systems: a review. Chem Eng J 288:146–160

    Article  Google Scholar 

  • Li L, Zhang C (2020) Electro-hydrodynamics of droplet generation in a co-flowing microfluidic device under electric control. Colloids Surf A Physicochem Eng Aspects 586:124258

    Article  Google Scholar 

  • Lim C, Hong J, Chung BG, Demello AJ, Choo J (2010) Optofluidic platforms based on surface-enhanced Raman scattering. Analyst 135:837–844

    Article  Google Scholar 

  • Lin W-Y, Wang Y, Wang S, Tseng H-R (2009) Integrated microfluidic reactors. Nano Today 4:470–481

    Article  Google Scholar 

  • Liu GL, Kim J, Lu Y, Lee LP (2006) Optofluidic control using photothermal nanoparticles. Nat Mater 5:27–32

    Article  Google Scholar 

  • Loskill P, Sezhian T, Tharp KM, Lee-Montiel FT, Jeeawoody S, Reese WM, Zushin P-JH, Stahl A, Healy KE (2017) WAT-on-a-chip: a physiologically relevant microfluidic system incorporating white adipose tissue. Lab Chip 17:1645–1654

    Article  Google Scholar 

  • Marle L, Greenway GM (2005) Microfluidic devices for environmental monitoring. Trends Anal Chem 24:795–802

    Article  Google Scholar 

  • Monat C, Domachuk P, Eggleton B (2007) Integrated optofluidics: a new river of light. Nat Photon 1:106–114

    Article  Google Scholar 

  • Monat C, Domachuk P, Grillet C, Collins M, Eggleton B, Cronin-Golomb M, Mutzenich S, Mahmud T, Rosengarten G, Mitchell A (2008) Optofluidics: a novel generation of reconfigurable and adaptive compact architectures. Microfluid Nanofluid 4:81–95

    Article  Google Scholar 

  • Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381–386

    Article  Google Scholar 

  • Shallan AI, Priest C (2019) Microfluidic process intensification for synthesis and formulation in the pharmaceutical industry. Chem Eng Process Process Intensif 142:107559

    Article  Google Scholar 

  • Shanko E-S, van de Burgt Y, Anderson PD, den Toonder JM (2019) Microfluidic magnetic mixing at low reynolds numbers and in stagnant fluids. Micromachines 10:731

    Article  Google Scholar 

  • Shojaeian M, Hardt S (2018) Fast electric control of the droplet size in a microfluidic T-junction droplet generator. Appl Phys Lett 112:194102

    Article  Google Scholar 

  • Sieber S, Wirth L, Cavak N, Koenigsmark M, Marx U, Lauster R, Rosowski M (2018) Bone marrow-on-a-chip: long-term culture of human haematopoietic stem cells in a three-dimensional microfluidic environment. J Tissue Eng Regen Med 12:479–489

    Article  Google Scholar 

  • Sinton D (2014) Energy: the microfluidic frontier. Lab Chip 14:3127–3134

    Article  Google Scholar 

  • Su H, Wang Z, Chen Y, Mo S, An L (2020) Numerical simulation on interface dynamics of core coalescence of double-emulsion droplets. Ind Eng Chem Res 59:21248–21260

    Article  Google Scholar 

  • Sugioka K, Cheng Y (2012) Femtosecond laser processing for optofluidic fabrication. Lab Chip 12:3576–3589

    Article  Google Scholar 

  • Sun Y, Shopova SI, Frye-Mason G, Fan X (2008) Rapid chemical-vapor sensing using optofluidic ring resonators. Opt Lett 33:788–790

    Article  Google Scholar 

  • Wang Z, Li S, Chen R, Zhu X, Liao Q, Ye D, Zhang B (2018) Numerical study on dynamic behaviors of the coalescence between the advancing liquid meniscus and multi-droplets in a microchannel using CLSVOF method. Comput Fluids 170:341–348

    Article  MathSciNet  MATH  Google Scholar 

  • Wu J, He Z, Chen Q, Lin J-M (2016) Biochemical analysis on microfluidic chips. Trends Anal Chem 80:213–231

    Article  Google Scholar 

  • Yang Y, Wang Z, Chen R, Zhu X, Liao Q, Ye D, Yang Y, Li W (2021) Droplet migration and coalescence in a microchannel induced by the photothermal effect of a focused infrared laser. Ind Eng Chem Res 60:1912–1925

    Article  Google Scholar 

  • Yoosefian J, Alizadeh N (2019) Photothermal lens microfluidic sensor for femtomole detection of 2, 4, 6-trinitrotoluene based on Meisenheimer complexation. Sens Actuators B Chem 298:126882

    Article  Google Scholar 

  • You M, Li Z, Feng S, Gao B, Yao C, Hu J, Xu F (2020) Ultrafast photonic PCR based on photothermal nanomaterials. Trends Biotechnol 38:637–649

    Article  Google Scholar 

  • Zhang X, Zhang Z (2019) Microfluidic passive flow regulatory device with an integrated check valve for enhanced flow control. Micromachines 10:653

    Article  Google Scholar 

  • Zhang K, Jian A, Zhang X, Wang Y, Li Z, Tam H-Y (2011) Laser-induced thermal bubbles for microfluidic applications. Lab Chip 11:1389–1395

    Article  Google Scholar 

  • Zhang P, Bachman H, Ozcelik A, Huang TJ (2020a) Acoustic microfluidics. Annu Rev Anal Chem 13:17–43

    Article  Google Scholar 

  • Zhang X, Xia K, Ji A (2020b) A portable plug-and-play syringe pump using passive valves for microfluidic applications. Sens Actuators B Chem 304:127331

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports of the National Natural Science Foundation of China (No. 51906023) and the National Natural Science Funds for Distinguished Young Scholar (No. 51925601).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuefeng He or Rong Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 115805 KB)

Supplementary file2 (MP4 56651 KB)

Supplementary file3 (MP4 45111 KB)

Supplementary file4 (MP4 108670 KB)

Supplementary file5 (MP4 119871 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Chen, R., Zhu, X. et al. Infrared laser-induced photothermal phase change for liquid actuation in microchannels. Microfluid Nanofluid 25, 58 (2021). https://doi.org/10.1007/s10404-021-02460-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-021-02460-9

Keywords

Navigation