Skip to main content
Log in

Carbon nanotubes in microfluidic lab-on-a-chip technology: current trends and future perspectives

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Advanced nanomaterials such as carbon nanotubes (CNTs) display unprecedented properties such as strength, electrical conductance, thermal stability, and intriguing optical properties. These properties of CNT allow construction of small microfluidic devices leading to miniaturization of analyses previously conducted on a laboratory bench. With dimensions of only millimeters to a few square centimeters, these devices are called lab-on-a-chip (LOC). A LOC device requires a multidisciplinary contribution from different fields and offers automation, portability, and high-throughput screening along with a significant reduction in reagent consumption. Today, CNT can play a vital role in many parts of a LOC such as membrane channels, sensors and channel walls. This review paper provides an overview of recent trends in the use of CNT in LOC devices and covers challenges and recent advances in the field. CNTs are also reviewed in terms of synthesis, integration techniques, functionalization and superhydrophobicity. In addition, the toxicity of these nanomaterials is reviewed as a major challenge and recent approaches addressing this issue are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdolahad M et al (2012) A vertically aligned carbon nanotube-based impedance sensing biosensor for rapid and high sensitive detection of cancer cells. Lab Chip 12(6):1183–1190

    Article  Google Scholar 

  • Alfi M, Nasrabadi H, Banerjee D (2016) Experimental investigation of confinement effect on phase behavior of hexane, heptane and octane using lab-on-a-chip technology. Fluid Phase Equilib 423:25–33

    Article  Google Scholar 

  • Ali MA et al (2013) Highly efficient bienzyme functionalized nanocomposite-based microfluidics biosensor platform for biomedical application. Sci Rep 3:2661–2669

    Article  Google Scholar 

  • Ali MA et al (2015) Protein functionalized carbon nanotubes-based smart lab-on-a-chip. ACS Appl Mater Interfaces 7(10):5837–5846

    Article  Google Scholar 

  • Andrews R et al (1999) Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chem Phys Lett 303(5):467–474

    Article  Google Scholar 

  • Babu DJ et al (2014) Inscribing wettability gradients onto superhydrophobic carbon nanotube surfaces. Adv Mater Interfaces 1(2)

  • Bachilo SM et al (2002) Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298(5602):2361–2366

    Article  Google Scholar 

  • Bahadır EB, Sezgintürk MK (2016) A review on impedimetric biosensors. Artif Cells Nanomed Biotechnol 44(1):248–262

    Article  Google Scholar 

  • Bakajin O et al (2003) Carbon nanotube based microfluidic elements for filtration and concentration. In: 7th International conference on miniaturized chemical and biochemical analysts systems

  • Barone PW et al (2005) Near-infrared optical sensors based on single-walled carbon nanotubes. Nat Mater 4(1):86–92

    Article  Google Scholar 

  • Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297(5582):787–792

    Article  Google Scholar 

  • Beg S et al (2011) Advancement in carbon nanotubes: basics, biomedical applications and toxicity. J Pharm Pharmacol 63(2):141–163

    Article  Google Scholar 

  • Bhattacharya K et al (2016) Biological interactions of carbon-based nanomaterials: from coronation to degradation. Nanomed Nanotechnol Biol Med 12(2):333–351

    Article  Google Scholar 

  • Bourlon B et al (2007) A nanoscale probe for fluidic and ionic transport. Nat Nanotechnol 2(2):104–107

    Article  Google Scholar 

  • Bussy C, Methven L, Kostarelos K (2013) Hemotoxicity of carbon nanotubes. Adv Drug Deliv Rev 65(15):2127–2134

    Article  Google Scholar 

  • Cao H et al (2010) Single-walled carbon nanotube network/poly composite thin film for flow sensor. Microsyst Technol 16(6):955–959

    Article  Google Scholar 

  • Chen GD et al (2012) Nanoporous micro-element arrays for particle interception in microfluidic cell separation. Lab Chip 12(17):3159–3167

    Article  Google Scholar 

  • Chen Y, Mun SC, Kim J (2013) A wide range conductometric pH sensor made with titanium dioxide/multiwall carbon nanotube/cellulose hybrid nanocomposite. IEEE Sens J 13(11):4157–4162

    Article  Google Scholar 

  • Cheng C et al (2016) Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing. Sci Adv 2(2):e1501272

    Article  Google Scholar 

  • Chhowalla M, Unalan HE (2011) Cathodic arc discharge for synthesis of carbon nanoparticles. Plasma processing of nanomaterials. Taylor & Francis, New York, p 147

    Google Scholar 

  • Chin CD, Linder V, Sia SK (2007) Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip 7(1):41–57

    Article  Google Scholar 

  • Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12(12):2118–2134

    Article  Google Scholar 

  • Choi K et al (2012) Digital microfluidics. Annu Rev Anal Chem 5:413–440

    Article  Google Scholar 

  • Choong C-L, Milne WI, Teo KB (2008) Review: carbon nanotube for microfluidic lab-on-a-chip application. IntJ Mater Form 1(2):117–125

    Article  Google Scholar 

  • Cohen P (2002) The origins of protein phosphorylation. Nat Cell Biol 4(5):E127–E130

    Article  Google Scholar 

  • Davis MJ et al (2001) Regulation of ion channels by protein tyrosine phosphorylation. Am J Physiol Heart Circ Physiol 281(5):H1835–H1862

    Google Scholar 

  • Daw R, Finkelstein J (2006) Lab on a chip. Nature 442(7101):367

    Article  Google Scholar 

  • Donaldson K et al (2013) Pulmonary toxicity of carbon nanotubes and asbestos—similarities and differences. Adv Drug Deliv Rev 65(15):2078–2086

    Article  Google Scholar 

  • Dong J, Ma Q (2015) Advances in mechanisms and signaling pathways of carbon nanotube toxicity. Nanotoxicology 9(5):658–676

    Article  Google Scholar 

  • Draper MC et al (2013) Superhydrophobic surfaces as an on-chip microfluidic toolkit for total droplet control. Anal Chem 85(11):5405–5410

    Article  Google Scholar 

  • Ebbesen T, Ajayan P (1992) Large-scale synthesis of carbon nanotubes. Nature 358(6383):220–222

    Article  Google Scholar 

  • Ema M, Gamo M, Honda K (2016) A review of toxicity studies of single-walled carbon nanotubes in laboratory animals. Regul Toxicol Pharmacol 74:42–63

    Article  Google Scholar 

  • Ensikat HJ et al (2011) Superhydrophobicity in perfection: the outstanding properties of the lotus leaf. Beilstein J Nanotechnol 2(1):152–161

    Article  Google Scholar 

  • Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid 3(3):245–281

    Article  Google Scholar 

  • Falk K et al (2010) Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett 10(10):4067–4073

    Article  Google Scholar 

  • Farooq MU, Hashmi A, Hong J (2015) Anisotropic bias dependent transport property of defective phosphorene layer. Sci Rep 5:12482-1–12482-11. doi:10.1038/srep12482

    Google Scholar 

  • Feng L et al (2002) Super, Äêhydrophobic surfaces: from natural to artificial. Adv Mater 14(24):1857–1860

    Article  Google Scholar 

  • Firme CP, Bandaru PR (2010) Toxicity issues in the application of carbon nanotubes to biological systems. Nanomed Nanotechnol Biol Med 6(2):245–256

    Article  Google Scholar 

  • Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7(5):626–634

    Article  Google Scholar 

  • García-Fandiño R, Sansom MS (2012) Designing biomimetic pores based on carbon nanotubes. Proc Natl Acad Sci 109(18):6939–6944

    Article  Google Scholar 

  • Ge L et al (2012) Vertically-aligned carbon nanotube membranes for hydrogen separation. RSC Adv 2(12):5329–5336

    Article  Google Scholar 

  • Ge L et al (2013) Photoelectrochemical lab-on-paper device based on an integrated paper supercapacitor and internal light source. Anal Chem 85(8):3961–3970

    Article  Google Scholar 

  • Gencoglu A, Minerick AR (2014) Electrochemical detection techniques in micro-and nanofluidic devices. Microfluid Nanofluid 17(5):781–807

    Article  Google Scholar 

  • Ghosh S, Sood A, Kumar N (2003) Carbon nanotube flow sensors. Science 299(5609):1042–1044

    Article  Google Scholar 

  • Gogotsi Y (2006) Nanotubes and nanofibers. CRC Press, Boca Raton

    Book  Google Scholar 

  • Gogotsi Y, Presser V (2013) Carbon nanomaterials. CRC Press, Boca Raton

    Google Scholar 

  • Gomez FJV et al (2015) Microchip electrophoresis-single wall carbon nanotube press-transferred electrodes for fast and reliable electrochemical sensing of melatonin and its precursors. Electrophoresis 36(16):1880–1885

    Article  Google Scholar 

  • Guo NL et al (2012) Multiwalled carbon nanotube-induced gene signatures in the mouse lung: potential predictive value for human lung cancer risk and prognosis. J Toxicol Environ Health A 75(18):1129–1153

    Article  Google Scholar 

  • Guo L et al (2015a) Application of microfluidic “lab-on-a-chip” for the detection of mycotoxins in foods. Trends Food Sci Technol 46(2):252–263

    Article  MathSciNet  Google Scholar 

  • Guo S et al (2015b) Nanofluidic transport through isolated carbon nanotube channels: Advances, controversies, and challenges. Adv Mater 27(38):5726–5737

    Article  Google Scholar 

  • Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7(9):1094–1110

    Article  Google Scholar 

  • Harris PJF (2009) Carbon nanotube science: synthesis, properties and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • He P et al (2013) Label-free electrochemical monitoring of vasopressin in aptamer-based microfluidic biosensors. Anal Chim Acta 759:74–80

    Article  Google Scholar 

  • Heister E et al (2010) Higher dispersion efficacy of functionalized carbon nanotubes in chemical and biological environments. ACS Nano 4(5):2615–2626

    Article  Google Scholar 

  • Heller DA et al (2005) Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv Mater 17(23):2793–2799

    Article  Google Scholar 

  • Hinds BJ et al (2004) Aligned multiwalled carbon nanotube membranes. Science 303(5654):62–65

    Article  Google Scholar 

  • Holt JK et al (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312(5776):1034–1037

    Article  Google Scholar 

  • Hummer G, Rasaiah JC, Noworyta JP (2001) Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414(6860):188–190

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  Google Scholar 

  • Jeng ES et al (2006) Detection of DNA hybridization using the near-infrared band-gap fluorescence of single-walled carbon nanotubes. Nano Lett 6(3):371–375

    Article  Google Scholar 

  • Joseph P et al (2006) Slippage of water past superhydrophobic carbon nanotube forests in microchannels. Phys Rev Lett 97(15):156104

    Article  Google Scholar 

  • Jothimuthu P et al (2016) Enhanced electrochemical sensing with carbon nanotubes modified with bismuth and magnetic nanoparticles in a lab-on-a-chip. ChemNanoMat 2(9):904–910

    Article  Google Scholar 

  • Journet C et al (2005) Contact angle measurements on superhydrophobic carbon nanotube forests: effect of fluid pressure. Europhys Lett EPL 71(1):104

    Article  Google Scholar 

  • Justino CI, Rocha-Santos TA, Duarte AC (2013) Advances in point-of-care technologies with biosensors based on carbon nanotubes. TrAC Trends Anal Chem 45:24–36

    Article  Google Scholar 

  • Kadimisetty K et al (2015) Automated multiplexed ECL immunoarrays for cancer biomarker proteins. Anal Chem 87(8):4472–4478

    Article  Google Scholar 

  • Karimi M et al (2015a) Temperature-sensitive nanocarriers. Morgan & Claypool Publishers, San Rafael

    Book  Google Scholar 

  • Karimi M et al (2015b) pH-sensitive micro/nanocarriers, in smart internal stimulus-responsive nanocarriers for drug and gene delivery. Morgan & Claypool Publishers, San Rafael

    Book  Google Scholar 

  • Karimi M et al (2015c) Carbon nanotubes part I: preparation of a novel and versatile drug-delivery vehicle. Expert Opin Drug Deliv 12(7):1071–1087

    Article  Google Scholar 

  • Karimi M et al (2015d) Carbon nanotubes part II: a remarkable carrier for drug and gene delivery. Expert Opin Drug Deliv 12(7):1089–1105

    Article  Google Scholar 

  • Karimi M et al (2015e) Nanotoxicology and future scope for smart nanoparticles, in smart external stimulus-responsive nanocarriers for drug and gene delivery. Morgan & Claypool Publishers, San Rafael

    Book  Google Scholar 

  • Karimi M et al (2016) Microfluidic systems for stem cell-based neural tissue engineering. Lab Chip 16(14):2551–2571

    Article  Google Scholar 

  • Khosravi F et al (2016) Label-free capture of breast cancer cells spiked in buffy coats using carbon nanotube antibody micro-arrays. Nanotechnology 27(13):13LT02

    Article  Google Scholar 

  • Kim S et al (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22(1):93–97

    Article  Google Scholar 

  • Kim J et al (2013) Microfluidic integrated multi-walled carbon nanotube (MWCNT) sensor for electrochemical nucleic acid concentration measurement. Sens Actuators B Chem 185:370–376

    Article  Google Scholar 

  • Kis A, Zettl A (1870) Nanomechanics of carbon nanotubes. Philos Trans R Soc Lond A Math Phys Eng Sci 2008(366):1591–1611

    Google Scholar 

  • Ko H et al (2014) Active digital microfluidic paper chips with inkjet-printed patterned electrodes. Adv Mater 26(15):2335–2340

    Article  Google Scholar 

  • Král P, Shapiro M (2001) Nanotube electron drag in flowing liquids. Phys Rev Lett 86(1):131

    Article  Google Scholar 

  • Kroto HW et al (1985) C 60: buckminsterfullerene. Nature 318(6042):162–163

    Article  Google Scholar 

  • Krupenkin TN et al (2007) Reversible wetting–dewetting transitions on electrically tunable superhydrophobic nanostructured surfaces. Langmuir 23(18):9128–9133

    Article  Google Scholar 

  • Kwon O-S et al (2013) Fabrication and characterization of inkjet-printed carbon nanotube electrode patterns on paper. Carbon 58:116–127

    Article  Google Scholar 

  • Lau KK et al (2003) Superhydrophobic carbon nanotube forests. Nano Lett 3(12):1701–1705

    Article  Google Scholar 

  • Li J, Wang L, Jiang W (2010) Super-hydrophobic surface of bulk carbon nanotubes compacted by spark plasma sintering followed by modification with polytetrofluorethylene. Carbon 48(9):2668–2671

    Article  Google Scholar 

  • Li X et al (2012a) Biocompatibility and toxicity of nanoparticles and nanotubes. J Nanomater 2012:6

    Google Scholar 

  • Li X et al (2012b) Cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode as electrochemical sensor on microfluidic chip. Anal Chim Acta 710:118–124

    Article  Google Scholar 

  • Li P et al (2012c) Integration of nanosensors into a sealed microchannel in a hybrid lab-on-a-chip device. Sens Actuators B Chem 166:870–877

    Article  Google Scholar 

  • Li CA et al (2014) A single-walled carbon nanotube thin film-based pH-sensing microfluidic chip. Analyst 139(8):2011–2015

    Article  Google Scholar 

  • Li W et al (2016) Single walled carbon nanotube sandwiched Ni–Ag hybrid nanoparticle layers for the extraordinary electrocatalysis toward glucose oxidation. Electrochim Acta 188:197–209

    Article  Google Scholar 

  • Li T et al (2017) Selective capture and rapid identification of E. coli O157: H7 by carbon nanotube multilayer biosensors and microfluidic chip-based LAMP. RSC Adv 7(48):30446–30452

    Article  Google Scholar 

  • Liao K-J et al (2003) Experimental studies on flow velocity sensors based on multiwalled carbon nanotubes. Microfabr Technol 4:57–59

    Google Scholar 

  • Liu Y et al (2007) Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles. J Mater Chem 17(11):1071–1078

    Article  Google Scholar 

  • Liu H et al (2010) Translocation of single-stranded DNA through single-walled carbon nanotubes. Science 327(5961):64–67

    Article  Google Scholar 

  • Lobo AO et al (2010) Fast preparation of hydroxyapatite/superhydrophilic vertically aligned multiwalled carbon nanotube composites for bioactive application. Langmuir 26(23):18308–18314

    Article  Google Scholar 

  • Lobo AO et al (2012) Fast functionalization of vertically aligned multiwalled carbon nanotubes using oxygen plasma. Mater Lett 70:89–93

    Article  Google Scholar 

  • Lu W et al (2012) State of the art of carbon nanotube fibers: opportunities and challenges. Adv Mater 24(14):1805–1833

    Article  Google Scholar 

  • Ma M, Hill RM (2006) Superhydrophobic surfaces. Curr Opin Colloid Interface Sci 11(4):193–202

    Article  Google Scholar 

  • Majumder M, Chopra N, Hinds BJ (2011) Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow. ACS Nano 5(5):3867–3877

    Article  Google Scholar 

  • Marmur A (2004) The lotus effect: superhydrophobicity and metastability. Langmuir 20(9):3517–3519

    Article  Google Scholar 

  • Maser WK et al (2001) Production of carbon nanotubes by CO2-laser evaporation of various carbonaceous feedstock materials. Nanotechnology 12(2):147

    Article  Google Scholar 

  • Medina-Sánchez M, Miserere S, Merkoçi A (2012) Nanomaterials and lab-on-a-chip technologies. Lab Chip 12(11):1932–1943

    Article  Google Scholar 

  • Melzer K et al (2016) Enzyme assays using sensor arrays based on ion-selective carbon nanotube field-effect transistors. Biosens Bioelectron 84:7–14

    Article  Google Scholar 

  • Meng L-Y, Park S-J (2010) Effect of fluorination of carbon nanotubes on superhydrophobic properties of fluoro-based films. J Colloid Interface Sci 342(2):559–563

    Article  Google Scholar 

  • Meng L-Y, Park S-J (2014) Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications. Carbon Lett 15(2):89–104

    Article  Google Scholar 

  • Merkoçi A, Kutter JP (2012) Analytical miniaturization and nanotechnologies. Lab Chip 12(11):1915–1916

    Article  Google Scholar 

  • Miserere S, Merkoçi A (2015) Microfluidic electrochemical biosensors: fabrication and applications. In: Lab-on-a-chip devices and micro-total analysis systems. Springer, pp 141–160

  • Miwa M et al (2000) Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir 16(13):5754–5760

    Article  Google Scholar 

  • Mogensen KB, Kutter JP (2012) Carbon nanotube based stationary phases for microchip chromatography. Lab Chip 12(11):1951–1958

    Article  Google Scholar 

  • Mogensen KB et al (2011) Carbon nanotube based separation columns for high electrical field strengths in microchip electrochromatography. Lab Chip 11(12):2116–2118

    Article  Google Scholar 

  • Mohammed MI, Haswell S, Gibson I (2015) Lab-on-a-chip or chip-in-a-lab: challenges of commercialization lost in translation. Proc Technol 20:54–59

    Article  Google Scholar 

  • Mokarian Z, Rasuli R, Abedini Y (2016) Facile synthesis of stable superhydrophobic nanocomposite based on multi-walled carbon nanotubes. Appl Surf Sci 369:567–575

    Article  Google Scholar 

  • Moraes FC et al (2012) Glass/PDMS hybrid microfluidic device integrating vertically aligned SWCNTs to ultrasensitive electrochemical determinations. Lab Chip 12(11):1959–1962

    Article  Google Scholar 

  • Murray C et al (2013) Electro-adaptive microfluidics for active tuning of channel geometry using polymer actuators. Microfluid Nanofluid 14(1–2):345–358

    Article  Google Scholar 

  • Nednoor P et al (2007) Carbon nanotube based biomimetic membranes: mimicking protein channels regulated by phosphorylation. J Mater Chem 17(18):1755–1757

    Article  Google Scholar 

  • Neuži P et al (2012) Revisiting lab-on-a-chip technology for drug discovery. Nat Rev Drug Discovery 11(8):620–632

    Article  Google Scholar 

  • Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40(22):4128–4158

    Article  Google Scholar 

  • Novell M et al (2014) A paper-based potentiometric cell for decentralized monitoring of Li levels in whole blood. Lab Chip 14(7):1308–1314

    Article  Google Scholar 

  • O’connell MJ et al (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297(5581):593–596

    Article  Google Scholar 

  • Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42(24):9005–9013

    Article  Google Scholar 

  • Park J-Y et al (2004) Electron–phonon scattering in metallic single-walled carbon nanotubes. Nano Lett 4(3):517–520

    Article  Google Scholar 

  • Pavlidis I et al (2010) Functionalized multi-wall carbon nanotubes for lipase immobilization. Adv Eng Mater 12(5):B179–B183

    Article  Google Scholar 

  • Peschel G (2011) Carbon–carbon bonds: hybridization. http://www.physik.fu-berlin.de/einrichtungen/ag/ag-reich/lehre/Archiv/ss2011/docs/Gina_Peschel-Handout.pdf. Published on 2011. 5(5)

  • Pethig R (2010) Review article—dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4(2):022811

    Article  Google Scholar 

  • Poland CA et al (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3(7):423–428

    Article  Google Scholar 

  • Popov VN (2004) Carbon nanotubes: properties and application. Mater Sci Eng R Rep 43(3):61–102

    Article  Google Scholar 

  • Pumera M (2011) Nanomaterials meet microfluidics. Chem Commun 47(20):5671–5680

    Article  Google Scholar 

  • Pumera M, Merkoçi A, Alegret S (2007) Carbon nanotube detectors for microchip CE: comparative study of single-wall and multiwall carbon nanotube, and graphite powder films on glassy carbon, gold, and platinum electrode surfaces. Electrophoresis 28(8):1274–1280

    Article  Google Scholar 

  • Puri N et al (2014) Conducting polymer functionalized single-walled carbon nanotube based chemiresistive biosensor for the detection of human cardiac myoglobin. Appl Phys Lett 105(15):153701

    Article  Google Scholar 

  • Qin Y et al (2016) Integration of microfluidic injection analysis with carbon nanomaterials/gold nanowire arrays-based biosensors for glucose detection. Sci Bull 61(6):473–480

    Article  Google Scholar 

  • Qu Y et al (2007) CNTs as Ultra-Low-Powered Aqueous Flow Sensors in PDMS Microfluidic Systems. In: 1st Annual IEEE international conference on nano/molecular medicine and engineering (IEEE-NANOMED)

  • Rafique MMA, Iqbal J (2011) Production of carbon nanotubes by different routes—a review. J Encapsul Adsorpt Sci 1(02):29

    Article  Google Scholar 

  • Rajavel K et al (2015) Multiwalled carbon nanotube oxygen sensor: enhanced oxygen sensitivity at room temperature and mechanism of sensing. ACS Appl Mater Interfaces 7(43):23857–23865

    Article  Google Scholar 

  • Ramos S et al (2010) CO2 laser treatment for stabilization of the superhydrophobicity of carbon nanotube surfaces. J Vac Sci Technol B Microelectron Nanometer Struct 28(6):1153

    Google Scholar 

  • Rasooly A, Bruck HA, Kostov Y (2013) An ELISA lab-on-a-chip (ELISA-LOC). Microfluid Diagn Methods Protoc 949:451–471

    Article  Google Scholar 

  • Ravichandran P et al (2011) Pulmonary biocompatibility assessment of inhaled single-wall and multiwall carbon nanotubes in BALB/c mice. J Biol Chem 286(34):29725–29733

    Article  Google Scholar 

  • Ríos Á, Zougagh M, Avila M (2012) Miniaturization through lab-on-a-chip: Utopia or reality for routine laboratories? A review. Anal Chim Acta 740:1–11

    Article  Google Scholar 

  • Rodzi N et al (2013) Hydrophobicity studies of polymer thin films with varied CNT concentration. In: SPIE micro + nano materials, devices, and applications. International Society for Optics and Photonics

  • Saghafi M et al (2014) Preparation of vertically aligned carbon nanotubes and their electrochemical performance in supercapacitors. Synth Met 195:252–259

    Article  Google Scholar 

  • Sansuk S et al (2012) Ultrasensitive detection of dopamine using a carbon nanotube network microfluidic flow electrode. Anal Chem 85(1):163–169

    Article  Google Scholar 

  • Seo J et al (2012) Hierarchical and multifunctional three-dimensional network of carbon nanotubes for microfluidic applications. Adv Mater 24(15):1975–1979

    Article  Google Scholar 

  • Sharma A et al (2015) Single-walled carbon nanotube based transparent immunosensor for detection of a prostate cancer biomarker osteopontin. Anal Chim Acta 869:68–73

    Article  Google Scholar 

  • Shim JS, Ahn CH (2012) Optical immunosensor using carbon nanotubes coated with a photovoltaic polymer. Biosens Bioelectron 34(1):208–214

    Article  Google Scholar 

  • Shiu J-Y, Kuo C-W, Chen P (2005) Fabrication of tunable superhydrophobic surfaces. In: Proceedings of SPIE—the international society for optical engineering

  • Smalley RE et al (2003) Carbon nanotubes: synthesis structure properties and applications, vol 80. Springer, Berlin

    Google Scholar 

  • Snyder-Talkington BN et al (2015) Multi-walled carbon nanotube-induced gene expression in vitro: concordance with in vivo studies. Toxicology 328:66–74

    Article  Google Scholar 

  • Song YS (2012) A passive microfluidic valve fabricated from a hydrogel filled with carbon nanotubes. Carbon 50(3):1417–1421

    Article  Google Scholar 

  • Song W et al (2016) Enzyme-free electrochemical aptasensor by using silver nanoparticles aggregates coupling with carbon nanotube inducing signal amplification through electrodeposition. J Electroanal Chem 781:62–69

    Article  Google Scholar 

  • Sun L, Crooks RM (2000) Single carbon nanotube membranes: a well-defined model for studying mass transport through nanoporous materials. J Am Chem Soc 122(49):12340–12345

    Article  Google Scholar 

  • Tanaka K, Iijima S (2014) Carbon nanotubes and graphene. Newnes, Oxford

    Google Scholar 

  • Teeguarden JG et al (2011) Comparative proteomics and pulmonary toxicity of instilled single-walled carbon nanotubes, crocidolite asbestos, and ultrafine carbon black in mice. Toxicol Sci 120(1):123–135

    Article  Google Scholar 

  • Vardharajula S et al (2012) Functionalized carbon nanotubes: biomedical applications. Int J Nanomed 7:5361

    Google Scholar 

  • Venkatanarayanan A et al (2012) High sensitivity carbon nanotube based electrochemiluminescence sensor array. Biosens Bioelectron 31(1):233–239

    Article  Google Scholar 

  • Vilela D et al (2012a) High NIR-purity index single-walled carbon nanotubes for electrochemical sensing in microfluidic chips. Lab Chip 12(11):2006–2014

    Article  Google Scholar 

  • Vilela D et al (2012b) Carbon nanotubes press-transferred on PMMA substrates as exclusive transducers for electrochemical microfluidic sensing. Anal Chem 84(24):10838–10844

    Article  Google Scholar 

  • Volpatti LR, Yetisen AK (2014) Commercialization of microfluidic devices. Trends Biotechnol 32(7):347–350

    Article  Google Scholar 

  • Waghe A, Rasaiah JC, Hummer G (2002) Filling and emptying kinetics of carbon nanotubes in water. J Chem Phys 117(23):10789–10795

    Article  Google Scholar 

  • Wang C-F et al (2016) Preparation and characterization of biomimetic superhydrophobic expanded graphite/carbon nanotube/polymer composites. In: 2016 International conference on electronics packaging (ICEP). The Japan Institute of Electronics Packaging

  • Wang S, Jiang L (2007) Definition of superhydrophobic states. Adv Mater 19(21):3423–3424

    Article  Google Scholar 

  • Wang Z, Zhe J (2011) Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves. Lab Chip 11(7):1280–1285

    Article  Google Scholar 

  • Wang DG et al (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280(5366):1077–1082

    Article  Google Scholar 

  • Wang K et al (2011) Stable superhydrophobic composite coatings made from an aqueous dispersion of carbon nanotubes and a fluoropolymer. Carbon 49(5):1769–1774

    Article  Google Scholar 

  • Wang C-F et al (2014) Combining hierarchical surface roughness with fluorinated surface chemistry to preserve superhydrophobicity after organic contamination. Appl Surf Sci 320:658–663

    Article  Google Scholar 

  • Wang H, Wu Y, Song J-F (2015a) Interface potential sensing from adsorption of human serum albumin (HSA) on carbon nanotube (CNT) monitored by zero current potentiometry for HSA determination. Biosens Bioelectron 72:225–229

    Article  Google Scholar 

  • Wang T et al (2015b) Electrical sensing of DNA-hybridization using two-port network based on suspended carbon nanotube membrane. Biomed Microdevice 17(6):1–7

    Article  Google Scholar 

  • Webster SM et al (2004) Intracellular gate opening in Shaker K+ channels defined by high-affinity metal bridges. Nature 428(6985):864–868

    Article  Google Scholar 

  • Whitby M, Quirke N (2007) Fluid flow in carbon nanotubes and nanopipes. Nat Nanotechnol 2(2):87–94

    Article  Google Scholar 

  • Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334):1971–1975

    Article  Google Scholar 

  • Wray S et al (1988) Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation. Biochim Biophys Acta Bioenerget 933(1):184–192

    Article  Google Scholar 

  • Xu Z, Zheng Q-S, Chen G (2007) Thermally driven large-amplitude fluctuations in carbon-nanotube-based devices: molecular dynamics simulations. Phys Rev B 75(19):195445

    Article  Google Scholar 

  • Yang T et al (2013) An electrochemical impedance sensor for the label-free ultrasensitive detection of interleukin-6 antigen. Sens Actuators B Chem 178:310–315

    Article  Google Scholar 

  • Yang N et al (2015) Carbon nanotube based biosensors. Sens Actuators B Chem 207:690–715

    Article  Google Scholar 

  • Yost AL et al (2015) Layer-by-layer functionalized nanotube arrays: a versatile microfluidic platform for biodetection. Microsyst Nanoeng 1:15037

    Article  Google Scholar 

  • Yu S, Guo Z, Liu W (2015) Biomimetic transparent and superhydrophobic coatings: from nature and beyond nature. Chem Commun 51(10):1775–1794

    Article  Google Scholar 

  • Zelada-Guillén GA et al (2013) Ultrasensitive and real-time detection of proteins in blood using a potentiometric carbon-nanotube aptasensor. Biosens Bioelectron 41:366–371

    Article  Google Scholar 

  • Zhao J et al (2012) A compact lab-on-a-chip nanosensor for glycerol detection. Appl Phys Lett 100(24):243109

    Article  Google Scholar 

  • Zhu X et al (2014) Fabrication of a superhydrophobic carbon nanotube coating with good reusability and easy repairability. Colloids Surf A 444:252–256

    Article  Google Scholar 

  • Zribi B et al (2016) A microfluidic electrochemical biosensor based on multiwall carbon nanotube/ferrocene for genomic DNA detection of Mycobacterium tuberculosis in clinical isolates. Biomicrofluidics 10(1):014115

    Article  Google Scholar 

Download references

Acknowledgements

Michael R. Hamblin was supported by US NIH Grants R01AI050875 and R21AI121700.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahdi Karimi or Michael R. Hamblin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, A., Amiri, H., Zare, H. et al. Carbon nanotubes in microfluidic lab-on-a-chip technology: current trends and future perspectives. Microfluid Nanofluid 21, 151 (2017). https://doi.org/10.1007/s10404-017-1989-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-017-1989-1

Keywords

Navigation