Skip to main content
Log in

Rotational electrohydrodynamics of a non-Newtonian fluid under electrical double-layer phenomenon: the role of lateral confinement

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We investigate the transient analysis of the transport features of a non-Newtonian fluid in a rotating microfluidic channel as modulated by the electrical double-layer effect. We use the power-law model to describe rheology of the non-Newtonian fluid in this study. We bring out the rotational force-induced development of the secondary flows inside the channel, taking the effects of the lateral confinement into account. We show that the consideration of lateral confinement into the analysis gives rise to a complex flow dynamics, allowing the formation of double-vortex structures as well as the sister vortexes in the flow field. In particular, we show that the sister vortexes formed in the flow field exhibit different senses of rotations under the influence of the electrical forcing, leading to a potential enhancement in mixing in microfluidic channel. Also, we show the variation of the volume flow rate through the channel for different cases and unveil the secondary flow-induced alteration in the device throughput. We believe that the inferences obtained from this analysis may improve the design of miniaturized systems/devices, typically used for the transportation of bio-fluids, which are largely non-Newtonian in nature, in a rotating platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abhimanyu P, Kaushik P, Mondal PK, Chakraborty S (2016) Transiences in rotational electro-hydrodynamics microflows of a viscoelastic fluid under electrical double layer phenomena. J Non-Newton Fluid Mech 231:56–67

    Article  MathSciNet  Google Scholar 

  • Ajdari A (1995) Electro-osmosis on inhomogeneously charged surfaces. Phys Rev Lett 75:755–758

    Article  Google Scholar 

  • Andersson P, Jesson G, Kylberg G et al (2007) Parallel nanoliter microfluidic analysis system. Anal Chem 79:4022–4030

    Article  Google Scholar 

  • Bandyopadhyay D, Reddy PDS, Sharma A et al (2012) Electro-magnetic-field-induced flow and interfacial instabilities in confined stratified liquid layers. Theor Comput Fluid Dyn 26:23–28

    Article  MATH  Google Scholar 

  • Bazant MZ, Thornton K, Ajdari A (2004) Diffuse-charge dynamics in electrochemical systems. Phys Rev E 70:21506

    Article  Google Scholar 

  • Bell JB, Colella P, Glaz HM (1989) A second-order projection method for the incompressible Navier–Stokes equations. J Comput Phys 85:257–283

    Article  MathSciNet  MATH  Google Scholar 

  • Brown DL, Cortez R, Minion ML (2001) Accurate projection methods for the incompressible Navier–Stokes equations. J Comput Phys 168:464–499

    Article  MathSciNet  MATH  Google Scholar 

  • Chakraborty S (2007) Electroosmotically driven capillary transport of typical non-Newtonian biofluids in rectangular microchannels. Anal Chim Acta 605:175–184

    Article  Google Scholar 

  • Chakraborty D, Gorkin R, Madou M et al (2009) Capillary filling in centrifugally actuated microfluidic devices with dynamically evolving contact line motion. J Appl Phys 105:84904

    Article  Google Scholar 

  • Chakraborty D, Madou M, Chakraborty S (2011) Anomalous mixing behaviour in rotationally actuated microfluidic devices. Lab Chip 11:2823–2826

    Article  Google Scholar 

  • Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Oxford University Press, London

    MATH  Google Scholar 

  • Chang CC, Wang CY (2011) Rotating electro-osmotic flow over a plate or between two plates. Phys Rev E 84:56320

    Article  Google Scholar 

  • Das S, Chakraborty S (2006) Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid. Anal Chim Acta 559:15–24

    Article  Google Scholar 

  • Deng SY, Jian YJ, Bi YH et al (2012) Unsteady electroosmotic flow of power-law fluid in a rectangular microchannel. Mech Res Commun 39:9–14

    Article  MATH  Google Scholar 

  • Fernandez-Feria R, Sanmiguel-Rojas E (2004) An explicit projection method for solving incompressible flows driven by a pressure difference. Comput Fluids 33:463–483

    Article  MATH  Google Scholar 

  • Goswami P, Kumar Mondal P, Dutta S, Chakraborty S (2015) Electroosmosis of Powell–Eyring fluids under interfacial slip. Electrophoresis 36:703–711

    Article  Google Scholar 

  • Green NG, Ramos A, González A et al (2000) Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements. Phys Rev E 61:4011–4018

    Article  Google Scholar 

  • Hart JE (1971) Instability and secondary motion in a rotating channel flow. J Fluid Mech 45:341–351

    Article  MATH  Google Scholar 

  • Huter RJ (1981) Zeta potential in colloid science. Academic Press, London

    Google Scholar 

  • Kaushik P, Abhimanyu P, Mondal PK, Chakraborty S (2017a) Confinement effects on the rotational microflows of a viscoelastic fluid under Electrical double layer phenomenon. J Non-Newton Fluid Mech 244:123–137

    Article  MathSciNet  Google Scholar 

  • Kaushik P, Mondal PK, Pati S, Chakraborty S (2017b) Heat transfer and entropy generation characteristics of a non-Newtonian Fluid squeezed and extruded between two parallel plates. J Heat Transf 139:22004

    Article  Google Scholar 

  • Kheshgi HS, Scriven LE (1985) Viscous flow through a rotating square channel. Phys Fluids 28:2968

    Article  MathSciNet  MATH  Google Scholar 

  • Lee C-Y, Chang C-L, Wang Y-N, Fu L-M (2011) Microfluidic mixing: a review. Int J Mol Sci 12:3263–3287

    Article  Google Scholar 

  • Li S-XX, Jian Y-JJ, Xie Z-YY et al (2015) Rotating electro-osmotic flow of third grade fluids between two microparallel plates. Colloids Surf A Physicochem Eng Asp 470:240–247

    Article  Google Scholar 

  • Madou M, Zoval J, Jia G et al (2006) Lab on a CD. Annu Rev Biomed Eng 8:601–628

    Article  Google Scholar 

  • Masliyah JH, Bhattacharjee S (2006) Electrokinetic and colloid transport phenomena. Wiley, New York

    Book  Google Scholar 

  • Mondal PK, Ghosh U, Bandopadhyay A et al (2013) Electric-field-driven contact-line dynamics of two immiscible fluids over chemically patterned surfaces in narrow confinements. Phys Rev E 88:23022

    Article  Google Scholar 

  • Mondal PK, Ghosh U, Bandopadhyay A et al (2014) Pulsating electric field modulated contact line dynamics of immiscible binary systems in narrow confinements under an electrical double layer phenomenon. Soft Matter 10:8512–8523

    Article  Google Scholar 

  • Mondal PK, DasGupta D, Chakraborty S (2015) Rheology-modulated contact line dynamics of an immiscible binary system under electrical double layer phenomena. Soft Matter 11:6692–6702

    Article  Google Scholar 

  • Ng C-O, Qi C (2015) Electro-osmotic flow in a rotating rectangular microchannel. In: Proceedings of Royal Society A, p 20150200

  • Ramos A, Morgan H, Green NG, Castellanos A (1998) Ac electrokinetics: a review of forces in microelectrode structures. J Phys D Appl Phys 31:2338–2353

    Article  Google Scholar 

  • Ramos A, González A, Castellanos A et al (2003) Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes. Phys Rev E 67:56302

    Article  Google Scholar 

  • Ray B, Reddy PDS, Bandyopadhyay D et al (2011) Surface instability of a thin electrolyte film undergoing coupled electroosmotic and electrophoretic flows in a microfluidic channel. Electrophoresis 32:3257–3267

    Article  Google Scholar 

  • Ray B, Reddy PDS, Bandyopadhyay D et al (2012) Instabilities in free-surface electroosmotic flows. Theor Comput Fluid Dyn 26:311–318

    Article  MATH  Google Scholar 

  • Ray B, Bandyopadhyay D, Sharma A et al (2013) Long-wave interfacial instabilities in a thin electrolyte film undergoing coupled electrokinetic flows: a nonlinear analysis. Microfluid Nanofluidics 15:19–33

    Article  Google Scholar 

  • Reddy PDS, Bandyopadhyay D, Joo SW et al (2011) Parametric study on instabilities in a two-layer electromagnetohydrodynamic channel flow confined between two parallel electrodes. Phys Rev E 83:36313

    Article  Google Scholar 

  • Richard C, Renaudin A, Aimez V, Charette PG (2009) An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices. Lab Chip 9:1371–1376

    Article  Google Scholar 

  • Ruo A-C, Chang M-H, Chen F (2010) Effect of rotation on the electrohydrodynamic instability of a fluid layer with an electrical conductivity gradient. Phys Fluids 22(2):024102

    Article  MATH  Google Scholar 

  • Speziale CG (1982) Numerical study of viscous flow in rotating rectangular ducts. J Fluid Mech 122:251–271

    Article  MATH  Google Scholar 

  • Squires TM, Bazant MZ (2004) Induced-charge electro-osmosis. J Fluid Mech 509:217–252

    Article  MathSciNet  MATH  Google Scholar 

  • Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices. Annu Rev Fluid Mech 36:381–411

    Article  MATH  Google Scholar 

  • Xie Z-Y, Jian Y-J (2014) Rotating electroosmotic flow of power-law fluids at high zeta potentials. Colloids Surf A Physicochem Eng Asp 461:231–239

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushik, P., Mondal, P.K. & Chakraborty, S. Rotational electrohydrodynamics of a non-Newtonian fluid under electrical double-layer phenomenon: the role of lateral confinement. Microfluid Nanofluid 21, 122 (2017). https://doi.org/10.1007/s10404-017-1957-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-017-1957-9

Keywords

Navigation