Skip to main content
Log in

A quantitative model for lateral flow assays

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

A simple mathematical model that quantitatively describes the dynamics of analyte capture in lateral flow assays is presented. The formulation accounts for the capillary-driven flow through the porous membrane, the advective transport of analyte, and the immunoreactions that take place in the detection line. Model predictions match the numerical results obtained by computer simulations of the full advection–diffusion–reaction problem in the operating regime of lateral flow assays. The main system parameters were condensed into two dimensionless numbers, namely the relative fluid velocity and the relative analyte concentration. The system is then completely characterized in the space of these critical numbers. The model is also able to describe the time evolution of analyte binding by using alternative timescalings, which discriminate different experimental conditions. The equations reported are practical tools for the design and optimization lateral flow tests, enabling informed decisions on basic questions such as the appropriate flow rate, sample volume, or assay time. Beyond lateral flow assays, the work offers an improved understanding of the underlying physicochemical processes involved in paper-based microfluidics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguirre A, Kler PA, Berli CL, Collins SE (2014) Design and operational limits of an ATR-FTIR spectroscopic microreactor for investigating reactions at liquid–solid interface. Chem Eng J 243:197–206

    Article  Google Scholar 

  • Ayachit U (2015) The paraview guide: a parallel visualization application

  • Cate DM, Adkins JA, Mettakoonpitak J, Henry CS (2015) Recent developments in paper-based microfluidic devices. Anal Chem 87(1):19–41

    Article  Google Scholar 

  • Choi JR, Liu Z, Hu J, Tang R, Gong Y, Feng S, Ren H, Wen T, Yang H, Qu Z et al (2016) Polydimethylsiloxane-paper hybrid lateral flow assay for highly sensitive point-of-care nucleic acid testing. Anal Chem. doi:10.1021/acs.analchem.6b0195

    Google Scholar 

  • Donea J, Huerta A (2003) Finite element methods for flow problems. Wiley Online Library, New York

    Book  Google Scholar 

  • Elizalde E, Urteaga R, Berli CL (2015) Rational design of capillary-driven flows for paper-based microfluidics. Lab Chip 15(10):2173–2180

    Article  Google Scholar 

  • Gervais T, Jensen KF (2006) Mass transport and surface reactions in microfluidic systems. Chem Eng Sci 61(4):1102–1121

    Article  Google Scholar 

  • Hansen R, Bruus H, Callisen TH, Hassager O (2012) Transient convection, diffusion, and adsorption in surface-based biosensors. Langmuir 28(19):7557–7563

    Article  Google Scholar 

  • Hu G, Gao Y, Sherman PM, Li D (2005) A microfluidic chip for heterogeneous immunoassay using electrokinetical control. Microfluid Nanofluid 1(4):346–355

    Article  Google Scholar 

  • Jahanshahi-Anbuhi S, Chavan P, Sicard C, Leung V, Hossain SZ, Pelton R, Brennan JD, Filipe CD (2012) Creating fast flow channels in paper fluidic devices to control timing of sequential reactions. Lab Chip 12(23):5079–5085

    Article  Google Scholar 

  • Kler PA, Berli CL, Guarnieri FA (2011) Modeling and high performance simulation of electrophoretic techniques in microfluidic chips. Microfluid Nanofluid 10(1):187–198

    Article  Google Scholar 

  • Kler PA, Dalcin LD, Paz RR, Tezduyar TE (2013) SUPG and discontinuity-capturing methods for coupled fluid mechanics and electrochemical transport problems. Comput Mech 51(2):171–185

    Article  MathSciNet  MATH  Google Scholar 

  • Kockmann N (2008) Transport phenomena in micro process engineering. Springer Science & Business Media, Berlin

    Google Scholar 

  • Mace CR, Deraney RN (2014) Manufacturing prototypes for paper-based diagnostic devices. Microfluid Nanofluid 16(5):801–809

    Article  Google Scholar 

  • Masoodi R, Pillai KM (2010) Darcy’s law-based model for wicking in paper-like swelling porous media. AIChE J 56(9):2257–2267

    Google Scholar 

  • Mendez S, Fenton EM, Gallegos GR, Petsev DN, Sibbett SS, Stone HA, Zhang Y, López GP (2009) Imbibition in porous membranes of complex shape: quasi-stationary flow in thin rectangular segments. Langmuir 26(2):1380–1385

    Article  Google Scholar 

  • Moghadam BY, Connelly KT, Posner JD (2015) Two orders of magnitude improvement in detection limit of lateral flow assays using isotachophoresis. Anal Chem 87(2):1009–1017

    Article  Google Scholar 

  • Parolo C, Medina-Sánchez M, de la Escosura-Muñiz A, Merkoçi A (2013) Simple paper architecture modifications lead to enhanced sensitivity in nanoparticle based lateral flow immunoassays. Lab Chip 13(3):386–390

    Article  Google Scholar 

  • Parsa H, Chin CD, Mongkolwisetwara P, Lee BW, Wang JJ, Sia SK (2008) Effect of volume-and time-based constraints on capture of analytes in microfluidic heterogeneous immunoassays. Lab Chip 8(12):2062–2070

    Article  Google Scholar 

  • Qian S, Bau HH (2003) A mathematical model of lateral flow bioreactions applied to sandwich assays. Anal Biochem 322(1):89–98

    Article  Google Scholar 

  • Qian S, Bau HH (2004) Analysis of lateral flow biodetectors: competitive format. Anal Biochem 326(2):211–224

    Article  Google Scholar 

  • Ragavendar M, Anmol CM (2012) A mathematical model to predict the optimal test line location and sample volume for lateral flow immunoassays. In: Engineering in Medicine and Biology Society (EMBC). IEEE, pp 2408–2411

  • Shin JH, Park J, Kim SH, Park JK (2014) Programmed sample delivery on a pressurized paper. Biomicrofluidics 8(5):054,121

    Article  Google Scholar 

  • Shou D, Fan J (2015) Structural optimization of porous media for fast and controlled capillary flows. Phys Rev E 91(5):053,021–6

    Article  MathSciNet  Google Scholar 

  • Squires TM, Messinger RJ, Manalis SR (2008) Making it stick: convection, reaction and diffusion in surface-based biosensors. Nat Biotechnol 26(4):417–426

    Article  Google Scholar 

  • van der Walt S, Colbert S, Varoquaux G (2011) The NumPy array: a structure for efficient numerical computation. Comput Sci Eng 13(1):22–30

    Article  Google Scholar 

  • Wang X, Hagen JA, Papautsky I (2013) Paper pump for passive and programmable transport. Biomicrofluidics 7(1):014,107–11

    Google Scholar 

  • Wong R, Tse H (eds) (2009) Lateral flow immunoassay. Humana Press, New York

    Google Scholar 

  • Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH (2006) Microfluidic diagnostic technologies for global public health. Nature 442(7101):412–418

    Article  Google Scholar 

  • Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13(12):2210–2251

    Article  Google Scholar 

  • Zeng N, Wang Z, Li Y, Du M, Liu X (2012) Identification of nonlinear lateral flow immunoassay state-space models via particle filter approach. IEEE Trans Nanotechnol 11(2):321–327

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET (PIP-0363), and the Universidad Nacional del Litoral, UNL (CAI+D-78-5012011010010-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio L. A. Berli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berli, C.L.A., Kler, P.A. A quantitative model for lateral flow assays. Microfluid Nanofluid 20, 104 (2016). https://doi.org/10.1007/s10404-016-1771-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-016-1771-9

Keywords

Navigation