Skip to main content
Log in

Separation of particles using acoustic streaming and radiation forces in an open microfluidic channel

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this study, a method to separate particles, within a small sample, based on size is demonstrated using ultrasonic actuation. This is achieved in a fluid, which has been deposited on a flat surface and is contained by a channel, such that it has a rectangular wetted area. The system utilises acoustic radiation forces (ARFs) and acoustic streaming. The force field generates two types of stable collection locations, a lower one within the liquid suspension medium and an upper one at the liquid–air interface. Acoustic streaming selectively delivers smaller particles from the lower locations to the upper ones. Experimental data demonstrate the ability to separate two sets of polystyrene microparticles, with diameters of 3 and 10 μm, into different stable locations. Methods to reduce migration of larger particles to the free surface are also investigated, thereby maximising the efficiency of the separation. Extraction of one set of 99 % pure particles at the liquid–air interface from the initial particle mixture using a manual pipette is demonstrated here. In addition, computational modelling performed suggests the critical separation size can be tuned by scaling the size of the system to alter which of ARFs and acoustic streaming-induced drag forces is dominant for given particle sizes, therefore presenting an approach to tunable particle separation system based on size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barnkob R, Augustsson P, Laurell T, Bruus H (2012) Acoustic radiation-and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane. Phys Rev E 86(5):056307

    Article  Google Scholar 

  • Bazou D, Kearney R, Mansergh F, Bourdon C, Farrar J, Wride M (2011) Gene expression analysis of mouse embryonic stem cells following levitation in an ultrasound standing wave trap. Ultrasound Med Biol 37(2):321–330

    Article  Google Scholar 

  • Bernassau AL, Courtney CRP, Beeley J, Drinkwater BW, Cumming DRS (2013) Interactive manipulation of micro particles in an octagonal sonotweezer. Appl Phys Lett 102(16):4101

    Article  Google Scholar 

  • Collins DJ, Alan T, Helmerson K, Neild A (2013) Surface acoustic waves for on-demand production of picoliter droplets and particle encapsulation. Lab Chip 13(16):3225–3231

    Article  Google Scholar 

  • Frampton KD, Martin SE, Minor K (2003) The scaling of acoustic streaming for application in micro-fluidic devices. Appl Acoust 64(7):681–692

    Article  Google Scholar 

  • Frampton KD, Minor K, Martin S (2004) Acoustic streaming in micro-scale cylindrical channels. Appl Acoust 65(11):1121–1129

    Article  Google Scholar 

  • Franke T, Braunmuller S, Schmid L, Wixforth A, Weitz DA (2010) Surface acoustic wave actuated cell sorting (SAWACS). Lab Chip 10(6):789–794

    Article  Google Scholar 

  • Gattiker F, Umbrecht F, Neuenschwander J, Sennhauser U, Hierold C (2008) Novel ultrasound read-out for a wireless implantable passive strain sensor (WIPSS). Sens Actuators A Phys 145–146:291–298

    Article  Google Scholar 

  • Gau H, Herminghaus S, Lenz P, Lipowsky R (1999) Liquid morphologies on structured surfaces: from micro channels to microchips. Science 283(5398):46–49

    Article  Google Scholar 

  • Glynne-Jones P, Demore CEM, Congwei Y, Yongqiang Q, Cochran S, Hill M (2012) Array-controlled ultrasonic manipulation of particles in planar acoustic resonator. IEEE Trans Ultrason Ferroelectr Freq Control 59(6):1258–1266

    Article  Google Scholar 

  • Gor’kov L (1962) On the forces acting on a small particle in an acoustical field in an ideal fluid. Sov Phys Dokl 6:773–775

    Google Scholar 

  • Gralinski I, Alan T, Neild A (2012) Non-contact acoustic trapping in circular cross-section glass capillaries: a numerical study. J Acoust Soc Am 132(5):2978–2987

    Article  Google Scholar 

  • Gupta S, Feke DL, Manas-Zloczower I (1995) Fractionation of mixed particulate solids according to compressibility using ultrasonic standing wave fields. Chem Eng Sci 50(20):3275–3284

    Article  Google Scholar 

  • Hagsäter S, Lenshof A, Skafte-Pedersen P, Kutter JP, Laurell T, Bruus H (2008) Acoustic resonances in straight micro channels: beyond the 1D-approximation. Lab Chip 8(7):1178–1184

    Article  Google Scholar 

  • Hamilton MF, Ilinskii YA, Zabolotskaya EA (2003) Acoustic streaming generated by standing waves in two-dimensional channels of arbitrary width. J Acoust Soc Am 113(1):153–160

    Article  Google Scholar 

  • Hammarström B, Laurell T, Nilsson J (2012) Seed particle-enabled acoustic trapping of bacteria and nanoparticles in continuous flow systems. Lab Chip 12(21):4296–4304

    Article  Google Scholar 

  • Hill M, Townsend RJ, Harris NR (2008) Modelling for the robust design of layered resonators for ultrasonic particle manipulation. Ultrasonics 48(6):521–528

    Article  Google Scholar 

  • Hultström J, Manneberg O, Dopf K, Hertz HM, Brismar H, Wiklund M (2007) Proliferation and viability of adherent cells manipulated by standing-wave ultrasound in a microfluidic chip. Ultrasound Med Biol 33(1):145–151

    Article  Google Scholar 

  • Johansson L, Evander M, Lilliehorn T, Almqvist M, Nilsson J, Laurell T, Johansson S (2013) Temperature and trapping characterization of an acoustic trap with miniaturized integrated transducers—towards in-trap temperature regulation. Ultrasonics 53(5):1020–1032

    Article  Google Scholar 

  • Johnson DA, Feke DL (1995) Methodology for fractionating suspended particles using ultrasonic standing wave and divided flow fields. Sep Technol 5(4):251–258

    Article  Google Scholar 

  • Landenberger B, Höfemann H, Wadle S, Rohrbach A (2012) Microfluidic sorting of arbitrary cells with dynamic optical tweezers. Lab Chip 12(17):3177–3183

    Article  Google Scholar 

  • Lei J, Glynne-Jones P, Hill M (2013) Acoustic streaming in the transducer plane in ultrasonic particle manipulation devices. Lab Chip 13(11):2133–2143

    Article  Google Scholar 

  • Leighton T (1994) The acoustic bubble. Academic Press, London

    Google Scholar 

  • Li H, Friend JR, Yeo LY (2008) Microfluidic colloidal island formation and erasure induced by surface acoustic wave radiation. Phys Rev Lett 101(8):084502

    Article  Google Scholar 

  • Manneberg O, Vanherberghen B, Svennebring J, Hertz HM, Onfelt B, Wiklund M (2008) A three-dimensional ultrasonic cage for characterization of individual cells. Appl Phys Lett 93(6):063901–063903

    Article  Google Scholar 

  • Muller PB, Barnkob R, Jensen MJH, Bruus H (2012) A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Lab Chip 12(22):4617–4627

    Article  Google Scholar 

  • Nam J, Lim H, Kim D, Shin S (2011) Separation of platelets from whole blood using standing surface acoustic waves in a micro channel. Lab Chip 11(19):3361–3364

    Article  Google Scholar 

  • Neild A, Oberti S, Beyeler F, Dual J, Nelson BJ (2006) A micro-particle positioning technique combining an ultrasonic manipulator and a micro gripper. J Micromech Microeng 16(8):1562

    Article  Google Scholar 

  • Neild A, Oberti S, Dual J (2007) Design, modelling and characterization of microfluidic devices for ultrasonic manipulation. Sens Actuators B Chem 121(2):452–461

    Article  Google Scholar 

  • Nyborg WL (1958) Acoustic streaming near a boundary. J Acoust Soc Am 30:329

    Article  MathSciNet  Google Scholar 

  • Nyborg W (1965) Acoustic streaming. Phys acoust 2(Pt B):265

  • Oberti S, Neild A, Dual J (2007) Manipulation of micrometer sized particles within a micro machined fluidic device to form two-dimensional patterns using ultrasound. J Acoust Soc Am 121:778

    Article  Google Scholar 

  • Petersson F, Nilsson A, Holm C, Jönsson H, Laurell T (2005) Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces. Lab Chip 5(1):20–22

    Article  Google Scholar 

  • Petersson F, Åberg L, Swärd-Nilsson A-M, Laurell T (2007) Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal Chem 79(14):5117–5123

    Article  Google Scholar 

  • Rife J, Bell M, Horwitz J, Kabler M, Auyeung R, Kim W (2000) Miniature valveless ultrasonic pumps and mixers. Sens Actuators A Phys 86(1):135–140

    Article  Google Scholar 

  • Rogers P, Neild A (2011) Selective particle trapping using an oscillating microbubble. Lab Chip 11(21):3710–3715

    Article  Google Scholar 

  • Rogers P, Gralinski I, Galtry C, Neild A (2013) Selective particle and cell clustering at air–liquid interfaces within ultrasonic microfluidic systems. Microfluid Nanofluid 14(3–4):469–477

    Article  Google Scholar 

  • Shafiee H, Sano MB, Henslee EA, Caldwell JL, Davalos RV (2010) Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP). Lab Chip 10(4):438–445

    Article  Google Scholar 

  • Shao FF, Neild A, Ng TW (2010) Hydrophobicity effect in the self assembly of particles in an evaporating droplet. J Appl Phys 108(3):034512–034518

    Article  Google Scholar 

  • Shi J, Ahmed D, Mao X, Lin S-CS, Lawit A, Huang TJ (2009a) Acoustic tweezers: patterning cells and micro particles using standing surface acoustic waves (SSAW). Lab Chip 9(20):2890–2895

    Article  Google Scholar 

  • Shi J, Huang H, Stratton Z, Huang Y, Huang TJ (2009b) Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9(23):3354–3359

    Article  Google Scholar 

  • Sritharan K, Strobl C, Schneider M, Wixforth A, Guttenberg Zv (2006) Acoustic mixing at low Reynold’s numbers. Appl Phys Lett 88(5):054102–054103

    Article  Google Scholar 

  • Tan JN, Neild A (2012) Microfluidic mixing in a Y-junction open channel. AIP Advances 2(3):032111–032160

    Article  Google Scholar 

  • Weiser M, Apfel R, Neppiras E (1984) Interparticle forces on red cells in a standing wave field. Acta Acustica United Acustica 56(2):114–119

    MATH  Google Scholar 

  • Woias P (2005) Micropumps—past, progress and future prospects. Sens Actuators B Chem 105(1):28–38

    Article  Google Scholar 

  • Xu L, Ng TW, Neild A (2009) Delicate selective single particle handling with a float-sink scheme. Appl Phys Lett 94(3):034103–034104

    Article  Google Scholar 

  • Yaralioglu GG, Wygant IO, Marentis TC, Khuri-Yakub BT (2004) Ultrasonic mixing in microfluidic channels using integrated transducers. Anal Chem 76(13):3694–3698

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Australian Research Council in the form of Grant No. DP110104010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Neild.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (WMV 13484 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devendran, C., Gralinski, I. & Neild, A. Separation of particles using acoustic streaming and radiation forces in an open microfluidic channel. Microfluid Nanofluid 17, 879–890 (2014). https://doi.org/10.1007/s10404-014-1380-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1380-4

Keywords

Navigation