Skip to main content
Log in

Oscillating bubbles in teardrop cavities for microflow control

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Microstreaming generated from oscillating microbubbles has great potential in microfluidic applications for localized flow control. In this study, we explore the use of teardrop-shaped cavities for trapping microbubbles. Upon acoustic actuation, these microbubbles confined in teardrop cavities can be utilized to generate a directional microstreaming flow. We further show that by altering the acoustic excitation frequency, a flow-switch for altering flow direction in microfluidic environments can be achieved using two oppositely arranged teardrop cavities with different sizes. In the end, we show that an array of such bubble-filled teardrop cavities can act as a fixated microfluidic transport system allowing for on-chip particle manipulation in complex flow patterns. This inexpensive method to create flows to switch and transport elements based on teardrop cavities can be widely employed for microfluidic applications such as drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed D, Mao XL, Juluri BK, Huang TJ (2009a) A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles. Microfluid Nanofluid 7(5):727–731

    Article  Google Scholar 

  • Ahmed D, Mao XL, Shi JJ, Juluri BK, Huang TJ (2009b) A millisecond micromixer via single-bubble-based acoustic streaming. Lab Chip 9(18):2738–2741

    Article  Google Scholar 

  • Betz A, Xu J, Qiu H, Attinger D (2010) Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling? Appl Phys Lett 97:141909

    Article  Google Scholar 

  • Chung SK, Cho SK (2008) On-chip manipulation of objects using mobile oscillating bubbles. J Micromech Microeng 18:12

    Google Scholar 

  • Chung SK, Cho SK (2009) 3-D manipulation of millimeter- and micro-sized objects using an acoustically excited oscillating bubble. Microfluid Nanofluid 6(2):261–265

    Article  Google Scholar 

  • Drelich J, Chibowski E, Meng DD, Terpilowski K (2011) Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 7(21):9804

    Article  Google Scholar 

  • Elder SA (1959) Cavitation microstreaming. J Acoust Soc Am 31(1):11

    Article  MathSciNet  Google Scholar 

  • Garty G, Grad M, Jones BK, Xu Y, Xu J, Randers-Pehrson G, Attinger D, Brenner DJ (2011) Design of a novel flow-and-shoot microbeam. Radiat Prot Dosim 143(2–4):344–348

    Article  Google Scholar 

  • Hashmi A, Yu G, Reilly-Collette M, Heiman G, Xu J (2012a) Oscillating bubbles: a versatile tool for lab on a chip applications. Lab Chip 12(21):4216–4227

    Article  Google Scholar 

  • Hashmi A, Yu G, Xu Y, Kwon HJ, Chen XL, Xu J (2012b) Microbubble array for on-chip worm processing (submitted)

  • Hettiarachchi K, Lee AP (2010) Polymer–lipid microbubbles for biosensing and the formation of porous structures. J Colloid Interf Sci 344(2):521–527

    Article  Google Scholar 

  • Hettiarachchi K, Zhang S, Feingold S, Lee AP, Dayton PA (2009) Controllable microfluidic synthesis of multiphase drug-carrying lipospheres for site-targeted therapy. Biotechnol Prog 25(4):938–945

    Article  Google Scholar 

  • Huang PH, Lapsley MI, Ahmed D, Chen Y, Wang L, Huang TJ (2012) A single-layer, planar, optofluidic switch powered by acoustically driven, oscillating microbubbles. Appl Phys Lett 101(14):141101

    Article  Google Scholar 

  • Kao J, Wang XL, Warren J, Xu J, Attinger D (2007) A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization. J Micromech Microeng 17(12):2454–2460

    Article  Google Scholar 

  • Kwon JO, Yang JS, Lee SJ, Rhee K, Chung SK (2011) Electromagnetically actuated micromanipulator using an acoustically oscillating bubble. J Micromech Microeng 21:11

    Google Scholar 

  • Lee KH, Lee JH, Won JM, Rhee K, Chung SK (2011) Micromanipulation using cavitational microstreaming generated by acoustically oscillating twin bubbles. Sensor Actuat A Phys. doi:10.1016/j.sna.2011.11.037

    Google Scholar 

  • Leslie DC, Easley CJ, Seker E, Karlinsey JM, Utz M, Begley MR, Landers JP (2009) Frequency-specific flow control in microfluidic circuits with passive elastomeric features. Nat Phys 5(3):231–235

    Article  Google Scholar 

  • Liu RH, Yang JN, Pindera MZ, Athavale M, Grodzinski P (2002) Bubble-induced acoustic micromixing. Lab Chip 2(3):151–157

    Article  Google Scholar 

  • Liu C, Thompson JA, Bau HH (2011) A membrane-based, high-efficiency, microfluidic debubbler. Lab Chip 11(9):1688–1693

    Article  Google Scholar 

  • Marmottant P, Hilgenfeldt S (2003) Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 423(6936):153

    Article  Google Scholar 

  • Marmottant P, Hilgenfeldt S (2004) A bubble-driven microfluidic transport element for bioengineering. P Natl Acad Sci USA 101(26):9523–9527

    Article  Google Scholar 

  • Marmottant P, Raven JP, Gardeniers H, Bomer JG, Hilgenfeldt S (2006) Microfluidics with ultrasound-driven bubbles. J Fluid Mech 568:109–118

    Article  MATH  Google Scholar 

  • Matsumoto K, Ueno I (2009) Oscillating bubbles in ultrasonic acoustic field. J Phys Conf Ser 147:012015

    Article  Google Scholar 

  • Okabe Y, Chen Y, Purohit R, Corn RM, Lee AP (2012) Piezoelectrically driven vertical cavity acoustic transducers for the convective transport and rapid detection of DNA and protein binding to DNA microarrays with SPR imaging—A parametric study. Biosens Bioelectron 35(1):37–43

    Article  Google Scholar 

  • Packer J, Attinger D, Ventikos Y (2008) Ultrasound-driven viscous streaming, modelled via momentum injection. Sens Transducers J 3:47–58

    Google Scholar 

  • Patel MV, Tovar AR, Lee AP (2012) Lateral cavity acoustic transducer as an on-chip cell/particle microfluidic switch. Lab Chip 12(1):139–145

    Article  Google Scholar 

  • Rogers P, Neild A (2011) Selective particle trapping using an oscillating microbubble. Lab Chip 11(21):3710–3715

    Article  Google Scholar 

  • Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411

    Article  Google Scholar 

  • Tovar A, Patel M, Lee A (2011) Lateral air cavities for microfluidic pumping with the use of acoustic energy. Microfluid Nanofluid 10(6):1269–1278

    Article  Google Scholar 

  • Wang Z, Zhe J (2011) Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves. Lab Chip 11(7):1280–1285

    Article  Google Scholar 

  • Wang XL, Attinger D, Moraga F (2006) A micro-rotor driven by an acoustic bubble. Nanosc Microsc Therm 10(4):379–385

    Article  Google Scholar 

  • Wang C, Jalikop SV, Hilgenfeldt S (2011a) Size-sensitive sorting of microparticles through control of flow geometry. Appl Phys Lett 99:3

    Google Scholar 

  • Wang SS, Huang XY, Yang C (2011b) Mixing enhancement for high viscous fluids in a microfluidic chamber. Lab Chip 11(12):2081–2087

    Article  Google Scholar 

  • Won JM, Lee JH, Lee KH, Rhee K, Chung SK (2011) Int J Precis Eng Man 12:577–580

    Article  Google Scholar 

  • Xie Y, Ahmed D, Lapsley MI, Lin SC, Nawaz AA, Wang L, Huang TJ (2012) Single-shot characterization of enzymatic reaction constants k m and k cat by an acoustic-driven, bubble-based fast micromixer. Anal Chem 84(17):7495–7501

    Article  Google Scholar 

  • Xu J, Attinger D (2007a) Acoustic excitation of superharmonic capillary waves on a meniscus in a planar microgeometry. Phys Fluids 19:108107

    Article  Google Scholar 

  • Xu J, Attinger D (2007b) Control and ultrasonic actuation of a gas-liquid interface in a microfluidic chip. J Micromech Microeng 17(3):609–616

    Article  Google Scholar 

  • Xu J, Attinger D (2008) Drop on demand in a microfluidic chip. J Micromech Microeng 18:065020

    Article  Google Scholar 

  • Xu J, Vaillant R, Attinger D (2010) Use of a porous membrane for gas bubble removal in microfluidic channels: physical mechanisms and design criteria. Microfluid Nanofluid 9(4):765–772

    Article  Google Scholar 

  • Yu G, Chen XL, Xu J (2011) Acoustophoresis in variously shaped liquid droplets. Soft Matter 7(21):10063–10069

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by DARPA Young Faculty Award N66001-11-1-4127 and WSUV Faculty Research Mini-Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xu.

Additional information

A. Hashmi and G. Heiman equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 2410 kb)

Supplementary material 2 (PDF 708 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashmi, A., Heiman, G., Yu, G. et al. Oscillating bubbles in teardrop cavities for microflow control. Microfluid Nanofluid 14, 591–596 (2013). https://doi.org/10.1007/s10404-012-1077-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-012-1077-5

Keywords

Navigation