Skip to main content
Log in

Analytical model of microfluidic transport of non-magnetic particles in ferrofluids under the influence of a permanent magnet

  • Original Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This study describes an analytical model and experimental verifications of transport of non-magnetic spherical microparticles in ferrofluids in a microfluidic system that consists of a microchannel and a permanent magnet. The permanent magnet produces a spatially non-uniform magnetic field that gives rise to a magnetic buoyancy force on particles within ferrofluid-filled microchannel. We obtained trajectories of particles in the microchannel by (1) calculating magnetic buoyancy force through the use of an analytical expression of magnetic field distributions and a nonlinear magnetization model of ferrofluids, (2) deriving governing equations of motion for particles through the use of analytical expressions of dominant magnetic buoyancy and hydrodynamic viscous drag forces, (3) solving equations of motion for particles in laminar flow conditions. We studied effects of particle size and flow rate in the microchannel on the trajectories of particles. The analysis indicated that particles were increasingly deflected in the direction that was perpendicular to the flow when size of particles increased, or when flow rate in the microchannel decreased. We also studied “wall effect” on the trajectories of particles in the microchannel when surfaces of particles were in contact with channel wall. Experimentally obtained trajectories of particles were used to confirm the validity of our analytical results. We believe this study forms the theoretical foundation for size-based particle (both synthetic and biological) separation in ferrofluids in a microfluidic device. The simplicity and versatility of our analytical model make it useful for quick optimizations of future separation devices as the model takes into account important design parameters including particle size, property of ferrofluids, magnetic field distribution, dimension of microchannel, and fluid flow rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berkovsky BM, Medvedev VF, Krakov MS (1993) Magnetic fluids: engineering applications. Oxford University Press, New York

    Google Scholar 

  • Bonner WA, Hulett HR, Sweet RG, Herzenberg LA (1972) Fluorescence activated cell sorting. Rev Sci Instrum 43(3):404–409

    Article  Google Scholar 

  • Brody JP, Yager P, Goldstein RE, Austin RH (1996) Biotechnology at low Reynolds numbers. Biophys J 71(6):3430–3441

    Article  Google Scholar 

  • Cho YK, Lee JG, Park JM, Lee BS, Lee Y, Ko C (2007) One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device. Lab Chip 7(5):565–573

    Article  Google Scholar 

  • Davis JA, Inglis DW, Morton KJ, Lawrence DA, Huang LR, Chou SY, Sturm JC, Austin RH (2006) Deterministic hydrodynamics: taking blood apart. Proc Natl Acad Sci USA 103(40):14779–14784

    Article  Google Scholar 

  • Deen WM (1998) Analysis of transport phenomena. Oxford University Press, New York

    Google Scholar 

  • Di Carlo D (2009) Inertial microfluidics. Lab Chip 9(21):3038–3046

    Article  Google Scholar 

  • Easley CJ, Karlinsey JM, Bienvenue JM, Legendre LA, Roper MG, Feldman SH, Hughes MA, Hewlett EL, Merkel TJ, Ferrance JP, Landers JP (2006) A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability. Proc Natl Acad Sci USA 103(51):19272–19277

    Article  Google Scholar 

  • Einstein A (1956) Investigations on the theory of Brownian movement. Dover, New York

    MATH  Google Scholar 

  • Furlani EP (2006) Analysis of particle transport in a magnetophoretic microsystem. J Appl Phys 99(2):024912

    Article  Google Scholar 

  • Furlani EP, Sahoo Y (2006) Analytical model for the magnetic field and force in a magnetophoretic microsystem. J Phys D 39(9):1724–1732

    Article  Google Scholar 

  • Ganatos P, Pfeffer R, Weinbaum S (1980) A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries.2. Parallel motion. J Fluid Mech 99:755–783

    Article  MATH  Google Scholar 

  • Gassner AL, Abonnenc M, Chen HX, Morandini J, Josserand J, Rossier JS, Busnel JM, Girault HH (2009) Magnetic forces produced by rectangular permanent magnets in static microsystems. Lab Chip 9:2356–2363

    Article  Google Scholar 

  • Gijs MAM, Lacharme F, Lehmann U (2010) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110(3):1518–1563

    Article  Google Scholar 

  • Gossett DR, Weaver WM, Mach AJ, Hur SC, Tse HTK, Lee W, Amini H, Di Carlo D (2010) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397(8):3249–3267

    Article  Google Scholar 

  • Han KH, Frazier AB (2004) Continuous magnetophoretic separation of blood cells in microdevice format. J Appl Phys 96(10):5797–5802

    Article  Google Scholar 

  • Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304(5673):987–990

    Article  Google Scholar 

  • Ichikawa N, Hosokawa K, Maeda R (2004) Interface motion of capillary-driven flow in rectangular microchannel. J Colloid Interface Sci 280(1):155–164

    Article  Google Scholar 

  • Jones TB (1995) Electromechanics of particles. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kose AR, Fischer B, Mao L, Koser H (2009) Label-free cellular manipulation and sorting via biocompatible ferrofluids. Proc Natl Acad Sci USA 106(51):21478–21483

    Article  Google Scholar 

  • Krebs MD, Erb RM, Yellen BB, Samanta B, Bajaj A, Rotello VM, Alsberg E (2009) Formation of ordered cellular structures in suspension via label-free negative magnetophoresis. Nano Lett 9(5):1812–1817

    Article  Google Scholar 

  • Krishnan GP, Leighton DT (1995) Inertial lift on a moving sphere in contact with a plane wall in a shear-flow. Phys Fluids 7(11):2538–2545

    Article  MATH  Google Scholar 

  • Kumar A, Bhardwaj A (2008) Methods in cell separation for biomedical application: cryogels as a new tool. Biomed Mater 3(3):034008

    Article  Google Scholar 

  • Laurell T, Petersson F, Nilsson A (2007) Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem Soc Rev 36(3):492–506

    Article  Google Scholar 

  • Lee H, Purdon AM, Chu V, Westervelt RM (2004) Controlled assembly of magnetic nanoparticles from magnetotactic bacteria using microelectromagnets arrays. Nano Lett 4(5):995–998

    Article  Google Scholar 

  • Leighton D, Acrivos A (1985) The lift on a small sphere touching a plane in the presence of a simple shear flow. Z Angew Math Phys 36:174–178

    Article  Google Scholar 

  • Li J, Zhang Z, Rosenzweig J, Wang YY, Chan DW (2002) Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem 48(8):1296–1304

    Google Scholar 

  • Liu C, Stakenborg T, Peeters S, Lagae L (2009) Cell manipulation with magnetic particles toward microfluidic cytometry. J Appl Phys 105(10):102011–102014

    Article  Google Scholar 

  • Mao L, Koser H (2005) Ferrohydrodynamic pumping in spatially traveling sinusoidally time-varying magnetic fields. J Magn Magn Mater 289:199–202

    Article  Google Scholar 

  • Mao LD, Koser H (2006) Towards ferrofluidics for mu-TAS and lab on-a-chip applications. Nanotechnology 17(4):S34–S47

    Article  Google Scholar 

  • Miltenyi S, Muller W, Weichel W, Radbruch A (1990) High gradient magnetic cell separation with MACS. Cytometry 11(2):231–238

    Article  Google Scholar 

  • Mirica KA, Shevkoplyas SS, Phillips ST, Gupta M, Whitesides GM (2009) Measuring densities of solids and liquids using magnetic levitation: fundamentals. J Am Chem Soc 131(29):10049–10058

    Article  Google Scholar 

  • Mirica KA, Phillips ST, Mace CR, Whitesides GM (2010) Magnetic levitation in the analysis of foods and water. J Agric Food Chem 58(11):6565–6569

    Article  Google Scholar 

  • Muldoon LL, Sandor M, Pinkston KE, Neuwelt EA (2005) Imaging, distribution, and toxicity of superparamagnetic iron oxide magnetic resonance nanoparticles in the rat brain and intracerebral tumor. Neurosurgery 57(4):785–796

    Article  Google Scholar 

  • Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A, Ryan P, Balis UJ, Tompkins RG, Haber DA, Toner M (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239

    Article  Google Scholar 

  • Odenbach S (2002) Ferrofluids: magnetically controllable fluids and their applications. Springer, London

    Google Scholar 

  • Pamme N (2006) Magnetism and microfluidics. Lab Chip 6(1):24–38

    Article  Google Scholar 

  • Pamme N (2007) Continuous flow separations in microfluidic devices. Lab Chip 7(12):1644–1659

    Article  Google Scholar 

  • Pamme N, Manz A (2004) On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates. Anal Chem 76(24):7250–7256

    Article  Google Scholar 

  • Pamme N, Wilhelm C (2006) Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip 6(8):974–980

    Article  Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D 36(13):R167–R181

    Article  Google Scholar 

  • Petersson F, Aberg L, Sward-Nilsson AM, Laurell T (2007) Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal Chem 79(14):5117–5123

    Article  Google Scholar 

  • Peyman SA, Kwan EY, Margarson O, Iles A, Pamme N (2009) Diamagnetic repulsion—a versatile tool for label-free particle handling in microfluidic devices. J Chromatogr A 1216(52):9055–9062

    Article  Google Scholar 

  • Pham P, Masse P, Berthier J (2000) Numerical modeling of superparamagnetic sub-micronic particles trajectories under the coupled action of 3D force fields. Eur Phys J Appl Phys 12(3):211–216

    Article  Google Scholar 

  • Pieranski P, Clausen S, Helgesen G, Skjeltorp AT (1996) Braids plaited by magnetic holes. Phys Rev Lett 77(8):1620–1623

    Article  Google Scholar 

  • Rosensweig RE (1966) Fluidmagnetic buoyancy. AIAA J 4:1751–1758

    Article  Google Scholar 

  • Rosensweig RE (1985) Ferrohydrodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Rosensweig RE, Lee WK, Siegell JH (1987) Magnetically stabilized fluidized-beds for solids separation by density. Sep Sci Technol 22(1):25–45

    Article  Google Scholar 

  • Schuler D, Frankel RB (1999) Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. Appl Microbiol Biol 52(4):464–473

    Article  Google Scholar 

  • Shi JJ, Huang H, Stratton Z, Huang YP, Huang TJ (2009) Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9(23):3354–3359

    Article  Google Scholar 

  • Skjeltorp AT (1983) One- and two-dimensional crystallization of magnetic holes. Phys Rev Lett 51(25):2306–2309

    Article  Google Scholar 

  • Smistrup K, Hansen O, Bruus H, Hansen MF (2005) Magnetic separation in microfluidic systems using microfabricated electromagnets—experiments and simulations. J Magn Magn Mater 293:597–604

    Article  Google Scholar 

  • Toner M, Irimia D (2005) Blood-on-a-chip. Annu Rev Biomed Eng 7:77–103

    Article  Google Scholar 

  • Tsutsui H, Ho CM (2009) Cell separation by non-inertial force fields in microfluidic systems. Mech Res Commun 36(1):92–103

    Article  Google Scholar 

  • Voldman J (2006) Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng 8:425–454

    Article  Google Scholar 

  • Weissleder R, Stark DD, Engelstad BL, Bacon BR, Compton CC, White DL, Jacobs P, Lewis J (1989) Superparamagnetic iron-oxide—pharmacokinetics and toxicity. Am J Roentgenol 152(1):167–173

    Google Scholar 

  • Willard MA, Kurihara LK, Carpenter EE, Calvin S, Harris VG (2004) Chemically prepared magnetic nanoparticles. Int Mater Rev 49(3-4):125–170

    Article  Google Scholar 

  • Winkleman A, Perez-Castillejos R, Gudiksen KL, Phillips ST, Prentiss M, Whitesides GM (2007) Density-based diamagnetic separation: devices for detecting binding events and for collecting unlabeled diamagnetic particles in paramagnetic solutions. Anal Chem 79(17):6542–6550

    Article  Google Scholar 

  • Wirix-Speetjens R, Fyen W, Xu KD, De Boeck J, Borghs G (2005) A force study of on-chip magnetic particle transport based on tapered conductors. IEEE Trans Magn 41(10):4128–4133

    Article  Google Scholar 

  • Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Res 28(1):153–184

    Article  Google Scholar 

  • Yamada M, Seki M (2005) Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip 5(11):1233–1239

    Article  Google Scholar 

  • Yamada M, Nakashima M, Seki M (2004) Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal Chem 76(18):5465–5471

    Article  Google Scholar 

  • Yellen BB, Hovorka O, Friedman G (2005) Arranging matter by magnetic nanoparticle assemblers. Proc Natl Acad Sci USA 102(25):8860–8864

    Article  Google Scholar 

  • Yung CW, Fiering J, Mueller AJ, Ingber DE (2009) Micromagnetic-microfluidic blood cleansing device. Lab Chip 9(9):1171–1177

    Article  Google Scholar 

  • Zborowski M, Ostera GR, Moore LR, Milliron S, Chalmers JJ, Schechter AN (2003) Red blood cell magnetophoresis. Biophys J 84(4):2638–2645

    Article  Google Scholar 

  • Zhu TT, Marrero F, Mao LD (2010) Continuous separation of non-magnetic particles inside ferrofluids. Microfluid Nanofluid 9(4–5):1003–1009

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Office of the Vice President for Research at the University of Georgia, and by the B3I Seed Grant Program with funds from the University of Georgia Research Foundation, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leidong Mao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, T., Lichlyter, D.J., Haidekker, M.A. et al. Analytical model of microfluidic transport of non-magnetic particles in ferrofluids under the influence of a permanent magnet. Microfluid Nanofluid 10, 1233–1245 (2011). https://doi.org/10.1007/s10404-010-0754-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-010-0754-5

Keywords

Navigation