Skip to main content
Log in

Modeling oscillatory flows in the transition regime using a high-order moment method

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We present results using three different continuum-based models to study oscillatory flow in the transition regime. Data obtained from numerical solutions of the Boltzmann equation and the direct simulation Monte Carlo method, are used to assess the ability of the continuum models to capture important rarefaction effects. We further highlight the need to consider two Knudsen numbers: one based upon the length scale and the other upon the time scale. It is found that the regularized 26 moment model can follow kinetic theory in the early transition regime in terms of both Knudsen numbers but the regularized 13 moment equations can only be used up to the upper limit of the hydrodynamic regime. However, the subtle interplay of the length and time scales on oscillatory non-equilibrium flow causes the Navier–Stokes equations to fail even in the hydrodynamic regime. In addition, the effect of modifying the accommodation coefficient is also considered. It is found that reducing the accommodation coefficient on the stationary wall alone will increase the motion of the gas. However, gaseous movement will be reduced by changing both walls from diffusive to specular reflection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bao M, Yang H, Yin H, Sun Y (2002) Energy transfer model for squeeze-film air damping in low vaccum. J Micromech Microeng 12:341–346

    Article  Google Scholar 

  • Bird GA (1994) Molecular gas dynamics and the direct simulation of gas flows. Clarendon Press, Oxford

    Google Scholar 

  • Cercignani C (1988) Theory and application of the Boltzmann equation. Scottish Academic Press, Edinburgh

    Google Scholar 

  • Cercignani C, Lampis M (1970) Kinetic models for gas–surface interactions. Transp Theory Stat Phys 1:101–114

    Article  MathSciNet  Google Scholar 

  • Doi T (2010) Numerical analysis of oscillatory Couette flow of a rarefied gas on the basis of the linearized Boltzmann equation. Vacuum 84:734–737

    Article  Google Scholar 

  • Emerson DR, Gu XJ, Stefanov SK, Yuhong S, Barber RW (2007) Nonplanar oscillatory shear flow: from the continuum to the free-molecular regime. Phys Fluids 19:107105

    Article  Google Scholar 

  • Frangi A, Ghisi A, Coronato L (2009) On a deterministic approach for the evaluation of gas damping in inertial MEMS in the free-molecule regime. Sens Actuators A 149:21–28

    Article  Google Scholar 

  • Gad-el-Hak M (1999) The fluid mechanics of microdevices—the Freeman scholar lecture. J Fluids Eng 121:5–33

    Article  Google Scholar 

  • Grad H (1949) On the kinetic theory of rarefied gases. Commun Pure Appl Math 2:331–407

    Article  MATH  MathSciNet  Google Scholar 

  • Gu XJ, Emerson DR (2007) A computational strategy for the regularized 13 moment equations with enhanced wall-boundary conditions. J Comp Phys 225:263–283

    Article  MATH  Google Scholar 

  • Gu XJ, Emerson DR (2009) A higher-order moment approach for capturing non-equilibrium phenomena in the transition regime. J Fluid Mech 636:177–216

    Article  MATH  MathSciNet  Google Scholar 

  • Gu XJ, Emerson DR, Tang GH (2009) Kramers’ problem and the Knudsen minimum: a theoretical analysis using a linearized 26 moment approach. Contin Mech Thermodyn 21:345–360

    Article  MATH  MathSciNet  Google Scholar 

  • Gu XJ, Emerson DR, Tang GH (2010) Analysis of the slip coefficient and defect velocity in the Knudsen layer of a rarefied gas using the linearized moment equations. Phys Rev E 81:016313

    Article  Google Scholar 

  • Guo ZL, Shi BC, Zheng CG (2008) An extended Navier–Stokes formulation for gas flows in the Knudsen layer near a wall. Euro Phys Lett 80:24001

    Article  Google Scholar 

  • Hadjiconstantinou NG (2005) Oscillatory shear-driven gas flows in the transition and free-molecular-flow regimes. Phys Fluids 17:100611

    Article  Google Scholar 

  • Karlin IV, Gorban AN, Dukek G, Nonnenmacher TF (1998) Dynamic correction to moment approximations. Phys Rev E 57:1668–1672

    Article  Google Scholar 

  • Kogan MN (1969) Rarefied gas dynamics. Plenum, New York

  • Lofthouse AJ, Boyd ID, Wright MJ (2006) Effects of continuum breakdown on hypersonic aerothermodynamics. In: 44th AIAA aerospace sciences meeting and exhibit 9–12 January 2006, Reno, Nevada, AIAA-2006-993

  • Maxwell JC (1879) On stresses in rarified gases arising from inequalities of temperature. Phil Trans R Soc (Lond) 170:231–256

    Article  Google Scholar 

  • Müller I, Ruggeri T (1993) Extended thermodynamics. Springer-Verlag, New York

  • Myong RS, Reese JM, Barber RW, Emerson DR (2005) Velocity slip in microscale cylindrical Couette flow: the Langmuir model. Phys Fluids 17:087105

    Article  Google Scholar 

  • O’Hare L, Scanlon TJ, Emerson DR, Reese JM (2008) Evaluating constitutive scaling models for application to compressible microflows. Int J Heat Mass Transf 51:1281–1292

    Article  MATH  Google Scholar 

  • Park JK, Bahukudumbi P, Beskok A (2004) Rarefaction effects on shear driven oscillatory gas flows: a direct simulation Monte Carlo study in the entire Knudsen regime. Phys Fluids 16:317–330

    Article  Google Scholar 

  • Schaaf SA, Chambré PL (1961) Flow of rarefied gases. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Sharipov F, Kalempa D (2007) Gas flow near a plate oscillating longitudinally with an arbitrary frequency. Phys Fluids 19:017110

    Article  Google Scholar 

  • Sharipov F, Kalempa D (2008) Oscillatory Couette flow at arbitrary frequency over the whole range of the Knudsen number. Microfluid Nanofluid 4:363–374

    Article  Google Scholar 

  • Sherman FS (1969) The transition from continuum to molecular flow. Annu Rev Fluid Mech 1:317–340

    Article  Google Scholar 

  • Sherman FS (1990) Viscous flow. McGraw-Hill, New York

    MATH  Google Scholar 

  • Struchtrup H (2005) Macroscopic transport equations for rarefied gas flows. Springer-Verlag, Berlin

    MATH  Google Scholar 

  • Struchtrup H, Torrilhon M (2003) Regularization of Grad’s 13 moment equations: derivation and linear analysis. Phys Fluids 15:2668–2680

    Article  MathSciNet  Google Scholar 

  • Struchtrup H, Torrilhon M (2007) H theorem, regularization, and boundary conditions for linearized 13 moment equations. Phys Rev Lett 99:014502

    Article  Google Scholar 

  • Struchtrup H, Torrilhon M (2008) Higher order effects in rarefied channel flows. Phys Rev E 78:046301

    Article  MathSciNet  Google Scholar 

  • Taheri P, Torrilhon M, Struchtrup H (2009a) Couette and Poiseuille microflows: analytical solutions for regularized 13-moment equations. Phys Fluids 21:017102

    Article  MathSciNet  Google Scholar 

  • Taheri P, Rana AS, Torrilhon M, Struchtrup H (2009b) Macroscopirc description of steady and unsteady rarefaction effects in boundary value problems of gas dynamics. Contin Mech Thermodyn 21:423–443

    Article  MATH  MathSciNet  Google Scholar 

  • Tang WC, Nguyen TCH, Howe RT (1989) Laterally driven polysilicon resonant microstructures. Sens Actuators A 20:25–32

    Article  Google Scholar 

  • Tang GH, Zhang YH, Gu XJ, Emerson DR (2008) Lattice Boltzmann modelling Knudsen layer effect in non-equilibrium flows. Europhys Lett 83:40008

    Article  Google Scholar 

  • Torrilhon M, Struchtrup H (2008) Boundary conditions for regularized 13-moment-equations for micro-channel-flows. J Comput Phys 227:1982–2011

    Article  MATH  MathSciNet  Google Scholar 

  • Truesdell C, Muncaster RG (1980) Fundamentals of Maxwell’s kinetic theory of a simple monotomic gas. Academic Press, New York

  • Xu K, Li Z (2004) Mircochannel flow in the slip regime: gas-kinetic BGK-Burnett solutions. J Fluid Mech 513:87–110

    Article  MATH  MathSciNet  Google Scholar 

  • Xu K, Liu H (2008) A multiple temperature kinetic model and its application to near continuum flows. Commun Comput Phys 4:1069–1085

    Google Scholar 

  • Zhang YH, Gu XJ, Barber RW, Emerson DR (2006) Capturing Knudsen layer phenomena using a lattice Boltzmann model. Phys Rev E 74:046704

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Engineering and Physical Sciences Research Council (EPSRC) for their support of Collaborative Computational Project 12 (CCP12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jun Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, XJ., Emerson, D.R. Modeling oscillatory flows in the transition regime using a high-order moment method. Microfluid Nanofluid 10, 389–401 (2011). https://doi.org/10.1007/s10404-010-0677-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-010-0677-1

Keywords

Navigation