Skip to main content
Log in

Analysis of transition and mobility of microparticle photophoresis with slip-flow model

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The objective of the present study is to investigate photophoretic motion of a spherical microparticle in slip-flow regime of gaseous medium. Energy from incident light absorbed by the particle is calculated by employing Mie scattering theory. Temperature and relative velocity distributions of the gaseous flow around the microparticle are developed using a slip-flow model with consideration of thermal stress slip effect. It is demonstrated that the present results agree well with previous measurements and theoretical predictions. Heat source function and asymmetry factor indicating, respectively, the level and the uneven characteristics of the energy distribution within the particle are evaluated. At low, intermediate, and high absorptivities, three different patterns of asymmetry factor versus size parameter are found and named negative photophoresis prevailing, normal switching of photophoresis, and positive photophoresis dominant. Influences of particle optical properties on the critical size for transition of negative–positive photophoresis are analyzed. The results demonstrate that increasing absorptivity or refractivity of the particle leads to a reduction in critical size for photophoresis transition. Both increase in Knudsen number and reduction in particle-to-gas thermal conductivity ratio enhance the photophoretic mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akhtaruzzaman A, Lin SP (1977) Photophoresis of absorbing particles. J Colloid Interface Sci 61:170–182

    Article  Google Scholar 

  • Aoki K, Sone Y, Waniguchi Y (1998) A rarefied gas flow induced by a temperature field: numerical analysis of the flow between coaxial elliptic cylinders with different uniform temperatures. Comput Math Appl 35:15–28

    Article  MATH  Google Scholar 

  • Aoki K, Takata S, Aikawa H, Glose F (2001) A rarefied gas flow caused by a discontinuous wall temperature. Phys Fluids 13:2645–2661 erratum 3843

    Article  MathSciNet  Google Scholar 

  • Arnold S, Lewittes M (1982) Size dependence of the photophoretic force. J Appl Phys 53:5314–5319

    Article  Google Scholar 

  • Bohren CF, Huffman DR (2004) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  • Chang LO, Keh HJ (2005) Low-Knudsen-number photophoresis of aerosol spheroids. J Colloid Interface Sci 282:69–79

    Article  Google Scholar 

  • Chernyak VG, Beresnev S (1993) Photophoresis of aerosol particles. J Aerosol Sci 24:857–866

    Article  Google Scholar 

  • Chernyak VG, Klitenik OV (2003) Photophoresis of a fine particle in a selectively excited gas. Phys Rev E 68:061205

    Article  Google Scholar 

  • Desyatnikov AS, Shvedov VG, Rode AV, Krolikowski W, Kivshar YS (2009) Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment. Opt Express 17:8201–8211

    Article  Google Scholar 

  • Dobson CC, Lewis JWL (1989) Survey of the Mie problem source function. J Opt Soc Am A 6:463–466

    Article  Google Scholar 

  • Dusel PW, Kerker M, Cooke DD (1979) Distribution of absorption centers within irradiated spheres. J Opt Soc Am 69:55–59

    Article  Google Scholar 

  • Greene WM, Spjut RE, Bar-Ziv E, Sarofim AF, Longwell JP (1985a) Photophoresis of irradiated spheres: absorption centers. J Opt Soc Am B 2:998–1004

    Article  Google Scholar 

  • Greene WM, Spjut RE, Bar-Ziv E, Longwell JP, Sarofim AF (1985b) Photophoresis of irradiated spheres: evaluation of the complex index of refraction. Langmuir 1:361–365

    Article  Google Scholar 

  • Gukasyan AA, Yalamov YI (1984) Photophoretic motion of moderately large aerosol particle. J Russian Laser Res 5:297–298

    Article  Google Scholar 

  • Happel J, Brenner H (1983) Low Reynolds number hydrodynamics. Marfinus Nijhoff, The Netherlands

    Google Scholar 

  • Hidy GM, Brock JR (1967) Photophoresis and the descent of particles into the lower stratosphere. J Geophys Res 72:455–460

    Article  Google Scholar 

  • Karniadakis GE, Beskok A, Aluru N (2005) Microflows and Nanoflows: fundamentals and simulation. Springer, New York

    MATH  Google Scholar 

  • Keh HJ, Hsu FC (2005) Photophoresis of an aerosol sphere normal to a plane wall. J Colloid Interface Sci 289:94–103

    Article  Google Scholar 

  • Keh HJ, Tu HJ (2001) Thermophoresis and photophoresis of cylindrical particles. Colloids Surf A 176:213–223

    Article  Google Scholar 

  • Kennard EH (1938) Kinetic theory of gases. McGraw-Hill, New York

    Google Scholar 

  • Kerker M, Cooke DD (1982) Photophoretic force on aerosol particles in the free molecule regime. J Opt Soc Am 72:1267–1272

    Article  Google Scholar 

  • Landau LD, Lifshitz EM (1959) Fluid mechanics. Pergamon, Oxford

    Google Scholar 

  • Li WK, Soong CY, Liu CH, Tzeng PY (2010) Parametric analysis of energy absorption in micro particle photophoresis in absorbing gaseous media. Def Sci J 60:233–237

    Google Scholar 

  • Lin SP (1975) On photophoresis. J Colloid Interface Sci 51:66–71

    Article  Google Scholar 

  • Liu CH, Soong CY, Li WK, Tzeng PY (2010) Internal electric field distribution within a micro-cylinder-shaped particle suspended in an absorbing gaseous medium. J Quant Spectrosc Radiat Transf 111:483–491

    Article  Google Scholar 

  • Lockerby DA, Reese JM, Emerson DR, Barber RW (2004) Velocity boundary condition at solid walls in rarefied gas calculations. Phys Rev E 70:017303

    Article  Google Scholar 

  • Mackowski DW (1989) Photophoresis of aerosol particles in the free molecular and slip-flow regimes. Int J Heat Mass Transfer 32:843–854

    Article  Google Scholar 

  • Orr C, Keng EYH (1964) Photophoretic effects in the stratosphere. J Atmos Sci 21:475–478

    Article  Google Scholar 

  • Phuoc T (2005) A comparative study of the photon pressure force, the photophoretic force, and the adhesion van der Waals Force. Opt Commun 245:27–35

    Article  Google Scholar 

  • Pluchino AB (1983) Photophoretic force on particles for low Knudsen number. Appl Opt 22:103–106

    Article  Google Scholar 

  • Pluchino AB, Arnold S (1985) Comprehensive model of the photophoretic force on a spherical microparticle. Opt Lett 10:261–263

    Article  Google Scholar 

  • Reed LD (1977) Low Knudsen number photophoresis. J Aerosol Sci 8:123–131

    Article  Google Scholar 

  • Shvedov VG, Desyatnikov AS, Rode AV, Krolikowski W, Kivshar YS (2009) Optical guiding of absorbing nanoclusters in air. Opt Express 17:5743–5757

    Article  Google Scholar 

  • Sitarski M, Kerker M (1984) Monte Carlo simulation of photophoresis of submicron aerosol particles. J Atmos Sci 41:2250–2262

    Article  Google Scholar 

  • Sone Y (1972) Flow induced by thermal stress in rarefied gas. Phys Fluids 15:1418

    Article  Google Scholar 

  • Sone Y (2000) Flows induced by temperature fields in a rarefied gas and their ghost effect on the behavior of a gas in the continuum limit. Annu Rev Fluid Mech 32:779–811

    Article  MathSciNet  Google Scholar 

  • Soong CY, Li WK, Liu CH, Tzeng PY (2010) Effect of thermal stress slip on micro-particle photophoresis in gaseous media. Opt Lett 35:625–627

    Article  Google Scholar 

  • Takeuchi T, Krauss O (2008) Photophoretic structuring of circumstellar dust disks. Astrophys J 677:1309–1323

    Article  Google Scholar 

  • Talbot L, Cheng RK, Schefer RW, Willis DR (1980) Thermophoresis of particles in heated boundary layer. J Fluid Mech 101:737–758

    Article  Google Scholar 

  • Tehranian S, Giovane F, Blum J, Xu YL, Gustafson BAS (2001) Photophoresis of micrometer sized particles in the free-molecular regime. Int J Heat Mass Transfer 44:1649–1657

    Article  MATH  Google Scholar 

  • Tong NT (1973) Photophoretic force in the free molecule and transition regimes. J Colloid Interface Sci 43:78–84

    Article  Google Scholar 

  • Xu YL, Gustafson BAS, Giovane F, Blum J, Tehranian S (1999) Calculation of the heat-source function in photophoresis of aggregated spheres. Phys Rev E 60:2347–2365

    Article  Google Scholar 

  • Yalamov YI, Khasanov AS (2006) Photophoresis of large sublimating aerosol particles. High Temp 44:291–295

    Article  Google Scholar 

  • Yalamov YI, Kutukov VB, Shchukin ER (1976) Theory of the photophoretic motion of large-size volatile aerosol particle. J Colloid Interface Sci 57:564–571

    Article  Google Scholar 

  • Zulehner W, Rohatschek H (1995) Representation and calculation of photophoretic forces and torques. J Aerosol Sci 24:201–210

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by National Science Council of the Republic of China (Taiwan) through the grant NSC-98-2221-E-035-068-MY3 (2009–2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Y. Soong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W.K., Soong, C.Y., Tzeng, P.Y. et al. Analysis of transition and mobility of microparticle photophoresis with slip-flow model. Microfluid Nanofluid 10, 199–209 (2011). https://doi.org/10.1007/s10404-010-0663-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-010-0663-7

Keywords

Navigation