Skip to main content
Log in

Migration of DNA molecules through entropic trap arrays: a dissipative particle dynamics study

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Dissipative particle dynamics (DPD) simulations of worm-like chain bead-spring models are used to explore the electrophoresis migration of DNA molecules traveling through narrow constrictions. The DPD is a relatively new numerical approach that is able to fully incorporate hydrodynamic interactions. Two mechanisms are identified that cause the size-dependent trapping of DNA chains and thus mobility differences. First, small molecules are found to be trapped in the deep region due to higher Brownian mobility and crossing of electric field lines. Second longer chains have higher probability to form hernias at the entrance of the gap and can pass the entropic barrier more easily. Consequently, longer DNA molecules have higher mobility and travel faster than shorter chains. The present DPD simulations show good agreement with existing experimental data as well as published numerical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • André P et al (1998) Polyelectrolyte/post collisions during electrophoresis: influence of hydrodynamic interactions. Eur Phys J B Condens Matter 4(3):307–312

    Article  Google Scholar 

  • Chen Z, Escobedo FA (2003) Simulation of chain-length partitioning in a microfabricated channel via entropic trapping. Mol Simul 29(6):417–425

    Article  Google Scholar 

  • Cheng KL et al (2008) Electrophoretic size separation of particles in a periodically constricted microchannel. J Chem Phys 128:101101

    Article  Google Scholar 

  • de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca

    Google Scholar 

  • Espanol P, Warren P (1995) Statistical-mechanics of dissipative particle dynamics. Europhys Lett 30(4):191–196

    Article  Google Scholar 

  • Fan X et al (2006) Simulating flow of DNA suspension using dissipative particle dynamics. Phys Fluids 18(6):063102-10

    Google Scholar 

  • Fan X et al (2003) Microchannel flow of a macromolecular suspension. Phys Fluids 15(1):11–21

    Article  Google Scholar 

  • Fedosov DA, Em Karniadakis G, Caswell B (2008) Dissipative particle dynamics simulation of depletion layer and polymer migration in micro- and nanochannels for dilute polymer solutions. J Chem Phys 128(14):144903–144914

    Google Scholar 

  • Fu J, Yoo J, Han J (2006) Molecular sieving in periodic free-energy landscapes created by patterned nanofilter arrays. Phys Rev Lett 97(1):18103

    Article  Google Scholar 

  • Groot RD, Rabone KL (2001) Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophys J 81(2):725–736

    Article  Google Scholar 

  • Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107(11):4423–4435

    Article  Google Scholar 

  • Han J, Craighead HG (2000) Separation of long DNA molecules in a microfabricated entropic trap array. Science 288(5468):1026–1029

    Article  Google Scholar 

  • Han J, Craighead HG (2002) Characterization and optimization of an entropic trap for DNA separation. Anal Chem 74(2):394–401

    Article  Google Scholar 

  • Han J, Turner SW, Craighead HG (1999) Entropic trapping and escape of long DNA molecules at submicron size constriction. Phys Rev Lett 83(8):1688–1691

    Article  Google Scholar 

  • He YD et al (2007) Polymer translocation through a nanopore in mesoscopic simulations. Polymer 48(12):3601–3606

    Article  Google Scholar 

  • Hoogerbrugge PJ, Koelman J (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19(3):155–160

    Article  Google Scholar 

  • Jendrejack RM, de Pablo JJ, Graham MD (2002) Stochastic simulations of DNA in flow: dynamics and the effects of hydrodynamic interactions. J Chem Phys 116:7752

    Article  Google Scholar 

  • Jiang W et al (2007) Hydrodynamic interaction in polymer solutions simulated with dissipative particle dynamics. J Chem Phys 126(4):044901–044912

    Google Scholar 

  • Kubo R (1966) The fluctuation–dissipation theorem. Rep Prog Phys 29:255–284

    Article  Google Scholar 

  • Le Guillou JC, Zinn-Justin J (1980) Critical exponents from field theory. Phys Rev B 21(9):3976–3998

    Article  MathSciNet  Google Scholar 

  • Lee YM, Joo YL (2007) Brownian dynamics simulations of polyelectrolyte molecules traveling through an entropic trap array during electrophoresis. J Chem Phys 127:124902

    Article  Google Scholar 

  • Li Z, Drazer G (2008) Hydrodynamic interactions in dissipative particle dynamics. Phys Fluids 20(10):103601–103608

    Google Scholar 

  • Long D, Viovy JL, Ajdari A (1996) Simultaneous action of electric fields and nonelectric forces on a polyelectrolyte: motion and deformation. Phys Rev Lett 76(20):3858–3861

    Article  Google Scholar 

  • Marsh CA, Backx G, Ernst MH (1997) Static and dynamic properties of dissipative particle dynamics. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top 56(2):1676–1691

    Google Scholar 

  • Millan JA et al (2007) Pressure driven flow of polymer solutions in nanoscale slit pores. J Chem Phys 126(12):124905–124909

    Google Scholar 

  • Moeendarbary E, Lam KY, Ng TY (2008) A new “bounce-normal” boundary in DPD calculations for the reduction of density fluctuations. In: 2008 Proceedings of the ASME Micro/Nanoscale Heat Transfer International Conference, MNHT 2008

  • Nkodo AE et al (2001) Diffusion coefficient of DNA molecules during free solution electrophoresis. Electrophoresis 22(12):2424–2432

    Article  Google Scholar 

  • Pan W et al (2008) Hydrodynamic interactions for single dissipative-particle–dynamics particles and their clusters and filaments. Phys Rev E Stat Nonlinear Soft Matter Phys 78(4):046706–046712

    Google Scholar 

  • Panwar AS, Kumar S (2006) Time scales in polymer electrophoresis through narrow constrictions: a Brownian dynamics study. Macromolecules 39(3):1279–1289

    Article  Google Scholar 

  • Sebastian KL, Paul AKR (2000) Kramers problem for a polymer in a double well. Phys Rev E 62(1):927–939

    Article  Google Scholar 

  • Streek M et al (2004) Mechanisms of DNA separation in entropic trap arrays: a Brownian dynamics simulation. J Biotechnol 112(1–2):79–89

    Article  Google Scholar 

  • Streek M et al (2005) Two-state migration of DNA in a structured microchannel. Phys Rev E Stat Nonlinear Soft Matter Phys 71(1):11905

    Google Scholar 

  • Symeonidis V, Em Karniadakis G, Caswell B (2005) Dissipative particle dynamics simulations of polymer chains: scaling laws and shearing response compared to DNA experiments. Phys Rev Lett 95(7):76001

    Article  Google Scholar 

  • Tessier F, Labrie J, Slater GW (2002) Electrophoretic separation of long polyelectrolytes in submolecular-size constrictions: a Monte Carlo study. Macromolecules 35(12):4791–4800

    Article  Google Scholar 

  • Viovy JL (2000) Electrophoresis of DNA and other polyelectrolytes: physical mechanisms. Rev Mod Phys 72(3):813–872

    Article  Google Scholar 

Download references

Acknowledgment

The first author, E. Moeendarbary, is grateful for the support of the Singapore Agency for Science, Technology and Research (A*STAR) through the International Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Y. Ng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moeendarbary, E., Ng, T.Y., Pan, H. et al. Migration of DNA molecules through entropic trap arrays: a dissipative particle dynamics study. Microfluid Nanofluid 8, 243–254 (2010). https://doi.org/10.1007/s10404-009-0463-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-009-0463-0

Keywords

Navigation