Skip to main content
Log in

Formation of ionic depletion/enrichment zones in a hybrid micro-/nano-channel

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This study fabricates a cross-form microchip in which the two side channels are attached to the main channel via a nanochannel bridge. Ionic depletion and enrichment zones are established on the anodic and cathodic sides of the nanochannel. Results show that the low conductivity within the depletion zone induces a rapid electroosmotic flow, which in turn prompts the generation of vortex flow structures within the depletion zone. Both the lengthening of the depletion bulk charge layer and decrease in length of the diffusion layer as the applied voltage is increased are also demonstrated in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ben Y, Chang HC (2002) Nonlinear Smoluchowski slip velocity and micro-vortex generation. J Fluid Mech 461:229–238

    Article  MATH  MathSciNet  Google Scholar 

  • Chang C-C, Yang R-J (2004) Computational analysis of electrokinetically driven flow mixing in microchannels with patterned blocks. J Micromech Microeng 14:550–558

    Article  Google Scholar 

  • Chen C-H, Lin H, Lele SK, Santiago JG (2005) Convective and absolute electrokinetic instability with conductivity gradients. J Fluid Mech 524:263–303

    Article  MATH  Google Scholar 

  • Cheng L-J, Guo LJ (2007) Rectified ion transport through concentration gradient in homogeneous silica. Nanochannels. Nano Lett 7:3165–3171

    Article  Google Scholar 

  • Daiguji H, Yang P, Szeri AJ, Majumdar A (2004) Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett 4:2315–2321

    Article  Google Scholar 

  • Dukhin SS (1991) Electrokinetic phenomena of the second kind and their applications. Adv Colloid Interface Sci 35:173–196

    Article  Google Scholar 

  • Dukhin SS, Mishchuk NA (1993) Intensification of electrodialysis based on electroosmosis of the second kind. J Memb Sci 79:199–210

    Article  Google Scholar 

  • Huang K-D, Yang R-J (2007) Electrokinetic behaviour of overlapped electric double layers in nanofluidic channels. Nanotech 18:115701

    Article  Google Scholar 

  • Hunter RJ (1981) Zeta potential in colloid science. Academic Press, New York

    Google Scholar 

  • Karnik R, Fan R, Yue M, Li D, Yang P, Majumdar A (2005) Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett 5:943–948

    Article  Google Scholar 

  • Kim SJ, Wang Y-C, Lee JH, Jang H, Han J (2007) Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Phys Rev Lett 99:044501

    Article  Google Scholar 

  • Kirby BJ, Hasselbrink Jr EF (2004) Zeta potential of microfluidic substrates: 1. theory, experimental techniques, and effects on separations. Electrophoresis 25:187–202

    Article  Google Scholar 

  • Kuo TC, Cannon Jr DM, Shannon MA, Bohn PW, Sweedler JV (2003) Hybrid three-dimensional nanofluidic/microfluidic devices using molecular gates. Sens Actuators A 102:223–233

    Article  Google Scholar 

  • Mishchuk NA (1999) The role of water dissociation in concentration polarization of disperse particles. Colloids Surf A 159:467–475

    Article  Google Scholar 

  • Pan Y-J, Lin J-J, Luo W-J, Yang R-J (2006) Sample flow switching techniques on microfluidic chips. Biosens Bioelectron 21:1644–1648

    Article  Google Scholar 

  • Plecis A, Schoch RB, Renaud P (2005) Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett 5:1147–1155

    Article  Google Scholar 

  • Probstein RF (1994) Physicochemical hydrodynamics: an introduction. Wiley, New York

  • Pu Q, Yun J, Temkin H, Liu S (2004) Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett 4:1099–1103

    Article  Google Scholar 

  • Rubinstein I, Shtilman L (1979) Voltage against current curves of cation exchange membranes. J Chem Soc Faraday Trans 75:231–246

    Article  Google Scholar 

  • Stein D, Kruithof M, Dekker C (2004) Surface-charge-governed ion transport in nanofluidic channels. Phys Rev Lett 93:035901

    Article  Google Scholar 

  • Takhistov P, Duginova K, Chang HC (2003) Electrokinetic mixing vortices due to electrolyte depletion at microchannel junctions. J Colloid Interface Sci 263:133–143

    Article  Google Scholar 

  • Wang Y-C, Stevens AL, Han J (2005) Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal Chem 77:4293–4299

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided to this study by the National Science Council of Taiwan under Grant no. NSC-96-2628-E-006-162-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruey-Jen Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (MPG 6940 kb)

ESM2 (MPG 5970 kb)

ESM3 (MPG 7273 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, KD., Yang, RJ. Formation of ionic depletion/enrichment zones in a hybrid micro-/nano-channel. Microfluid Nanofluid 5, 631–638 (2008). https://doi.org/10.1007/s10404-008-0281-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-008-0281-9

Keywords

Navigation