Skip to main content
Log in

Optofluidics: a novel generation of reconfigurable and adaptive compact architectures

Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The integration of microfluidics and microphotonics brings the ability to tune and reconfigure ultra-compact optical devices. This flexibility is essentially provided by three characteristics of fluids that are scalable at the micron-scale: fluid mobility, large ranges of index modulation, and abrupt interfaces that can be easily reshaped. Several examples of optofluidic devices are presented here to illustrate the achievement of flexible devices on (semi) planar and compact platforms. First, we report an integrated geometry for a compact and tunable interferometer that exploits a sharp and mobile air/water interface. We then describe a class of optically controlled devices that rely on the actuation of optically trapped micron-sized objects within a fluid environment. The last architecture results from the infiltration of photonic crystal devices with fluids. This produces tunable and reconfigurable photonic devices, like optical switches. Higher degrees of functionality could be achieved with sophisticated optofluidic platforms that associate complex microfluidic delivery and mixing schemes with microphotonic devices. Moreover, optofluidics offers new opportunities for realizing highly responsive and compact sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Almeida VR, Barrios CA, Panepucci RR, Lispon M (2004) All optical control of light on a silicon chip. Nature 431:1081–1084

    Article  Google Scholar 

  • Armani DK, Kippenberg TJ, Spillane SM, Vahala KJ (2003) Ultra-high-Q toroid microcavity on a chip. Nature 421:925–928

    Article  Google Scholar 

  • Armani AM, Vahala KJ (2006) Heavy water detection using ultra high Q microcavities. Opt Lett 31:1896–1898

    Article  Google Scholar 

  • Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290

    Google Scholar 

  • Ashkin A (1992) Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys J 61:569–582

    Google Scholar 

  • Atencia J, Beebe DJ (2005) Controlled microfluidic interfaces. Nature 437:648–655

    Article  Google Scholar 

  • Auroux PA, Lossifidis D, Reyes DR, Manz A (2002) Micro total analysis systems. 2. Analytical standard operations and applications. Anal Chem 74:2637–2652

    Article  Google Scholar 

  • Balslev S, Kristensen A (2005) Microfluidic single mode laser using high order Bragg grating and antiguiding segments. Opt Express 13:344–351

    Article  Google Scholar 

  • Balslev S, Jorgensen AM, Bilenberg B, Mogensen KB, Snakenborg D, Geschke O, Kutter JP, Kristensen A (2006) Lab-on-a-chip with integrated optical transducers. Lab Chip 6:213–217

    Article  Google Scholar 

  • Chao CY, Guo LJ (2003) Biochemical sensors based on polymer microrings with sharp asymmetrical resonance. Appl Phys Lett 83:1527–1529

    Article  Google Scholar 

  • Chen JY, Kutana A, Collier CP, Giapis KP (2005) Electrowetting in carbon nanotubes. Science 310:1480–1483

    Article  Google Scholar 

  • Cran-McGreehin S, Krauss TF, Dholakia K (2006) Integrated monolithic optical manipulation. Lab Chip 6:1122–1124

    Article  Google Scholar 

  • Domachuk P, Nguyen HC, Eggleton BJ, Straub M, Gu M (2004a) Microfluidic tunable photonic band gap device. Appl Phys Lett 84:1838–1840

    Article  Google Scholar 

  • Domachuk P, Nguyen HC, Eggleton BJ (2004b) Transverse probed microfluidic switchable photonic crystal fiber devices. Photonics Technol Lett IEEE 16:1900–1902

    Article  Google Scholar 

  • Domachuk P, Grillet C, Ta’eed V, Mägi E, Bolger J, Eggleton BJ, Rodd LE, Cooper-White J (2005a) Microfluidic interferometer. Appl Phys Lett 86:0241031–0241033

    Article  Google Scholar 

  • Domachuk P, Cronin-Golomb M, Eggleton BJ, Mutzenich S, Rosengarten G, Mitchell A (2005b) Application of optical trapping to beam manipulation in optofluidics. Opt Express 13:7265–7275

    Article  Google Scholar 

  • Domachuk P, Littler ICM, Cronin-Golomb M, Eggleton BJ (2006a) Compact resonant integrated microfluidic refractometer. Appl Phys Lett 88:0935131–0935133

    Article  Google Scholar 

  • Domachuk P, Magi E, Eggleton BJ, Cronin-Golomb M (2006b) Actuation of cantilevers by optical trapping. Appl Phys Lett 89:0711061–0711062

    Article  Google Scholar 

  • Erickson D, Rockwood T, Emery T, Scherer A, Psaltis D (2006) Nanofluidic tuning of photonic crystal circuits. Opt Lett 31:59–61

    Article  Google Scholar 

  • Espinola RL, Tsai MC, Yardley JT, Osgood RM (2003) Fast and low power thermooptic switch thin silicon on insulator. Photonics Technol Lett IEEE 15:1366–1368

    Article  Google Scholar 

  • Feynman RP, Leighton RB, Sands M (1964) The Feynman Lectures on Physics. Vol. II, 38-9-38-11, Addison-Wesley, Reading, MA

  • Galas JC, Torres J, Belotti M, Kou Q, Chen Y (2005) Microfluidic tunable dye laser with integrated mixer and ring resonator. Appl Phys Lett 86:2641011–2641013

    Article  Google Scholar 

  • Greulich KO, Pilarczyk G, Hoffmann A, Horste GMZ, Schafer B, Uhl V, Monajembashi S (2000) Micromanipulation by laser microbeam and optical tweezers: from plant cells to single molecules. J Microsc 198:182–187

    Article  Google Scholar 

  • Grillet C, Pottier P, Letartre X, Seassal C, Rojo-Romeo P, Viktorovitch P, dYerville MLV, Cassagne D (2001) Characterisation of 2D photonic crystals cavities on InP membranes. Eur Phys J AP 16:37–44

    Article  Google Scholar 

  • Grillet C, Smith C, Freeman D, Madden S, Luther-Davis B, Magi EC, Moss DJ, Eggleton BJ (2006) Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires. Opt Express 14:1070–1078

    Article  Google Scholar 

  • Husband B, Bu M, Evans AGR, Melvin T (2004) Investigation for the operation of an integrated peristaltic micropump. J Michrochem Microeng 14:S64–S69

    Article  Google Scholar 

  • Hwang IK, Kim SK, Yang J, Kim SH, Lee S, Lee Y (2005) Curved-microfiber photon coupling for photonic crystal light emitter. Appl Phys Lett 87:1311071–1311073

    Google Scholar 

  • Intonti F, Vignolini S, Turck V, Colocci M, Bettotti P, Pavesi L, Schweizer SL, Wehrspohn R, Wiersma D (2006) Rewritable photonic circuits. Appl Phys Lett 89:2111171–2111173

    Article  Google Scholar 

  • Kerbage C, Eggleton BJ (2003) Tunable microfluidic optical fiber gratings. Appl Phys Lett 82:1338–1340

    Article  Google Scholar 

  • Krauss TF (2007) Slow light in photonic crystal waveguides. J Phys D Appl Phys 40:2666–2670

    Article  Google Scholar 

  • Krauss TF, De La Rue RM, Brand S (1996) Two-dimensional photonic-bandgap structures operating at near infrared wavelengths. Nature 383:699–702

    Article  Google Scholar 

  • Krioukov E, Greve J, Otto C (2003) Performance of integrated optical microcavities for refractive index and fluorescence sensing. Sens Actuators B Chem 90:58–67

    Article  Google Scholar 

  • Kuiper S, Hendriks BHW (2004) Variable-focus liquid lens for miniature cameras. Appl Phys Lett 85:1128–1130

    Article  Google Scholar 

  • Levy U, Campbell K, Groisman A, Mookherjea S, Fainman Y (2006) On chip microfluidic tuning of an optical microring resonator. Appl Phys Lett 88:1111071–1111073

    Article  Google Scholar 

  • Li Z, Zhang Z, Emery T, Scherer A, Psaltis D (2006) Single mode optofluidic distributed feedback dye laser. Opt Express 14:696–701

    Article  Google Scholar 

  • Liu GL, Kim J, Lu Y, Lee LP (2006) Optofluidic control using photothermal nanoparticles. Nat Mater 5:27–32

    Article  Google Scholar 

  • Loncar M, Scherer A, Qiu Y (2003) Photonic crystal laser sources for chemical detection. Appl Phys Lett 82:4648–4650

    Article  Google Scholar 

  • Mach P, Dolinski M, Baldwin KW, Rogers JA, Kerbage C, Windeler RS, Eggleton BJ (2002) Tunable microfluidic optical filter. Appl Phys Lett 80:4294–4296

    Article  Google Scholar 

  • Maune B, Loncar M, Witzens J, Hochberg M, Baehr-Jones T, Psaltis D, Scherer A, Qiu Y (2004) Liquid crystal electric tuning of a photonic crystal laser. Appl Phys Lett 85:360–362

    Article  Google Scholar 

  • Mayers BT, Vezenov DV, Vullev VI, Whitesides GM (2005) Arrays and cascades of fluorescent liquid–liquid-waveguides. Anal Chem 77:1310–1316

    Article  Google Scholar 

  • Mazolli A, Maia Neto PA, Nussenzveig (2003) Theory of trapping forces in optical tweezers. Proc R Soc Lond A 459:3021–3041

    MATH  MathSciNet  Google Scholar 

  • Monat C, Domachuk P, Eggleton BJ (2007) Integrated optofluidics: a new river of light. Nat photonics 1:106–114

    Article  Google Scholar 

  • Mortensen NA, Xiao SS (2007) Slow-light enhancement of Beer–Lambert–Bouguer absorption. Appl Phys Lett 90:1411081–1411083

    Article  Google Scholar 

  • Nemet BA, Cronin-Golomb M (2002) Microscopic flow measurements with optically trapped microprobes. Opt Letters 27:1357–1359

    Article  Google Scholar 

  • Nemet BA, Shabtai Y, Cronin-Golomb M (2002) Imaging microscopic viscosity with confocal scanning optical tweezers. Opt Letters 27:264–266

    Article  Google Scholar 

  • Nguyen HC, Kuhlmey BT, Magi EC, Steel MJ, Domachuk P, Smith CL, Eggleton BJ (2005) Tapered photonic crystal fibres: properties, characterization and applications. Appl Phys B 81:377–387

    Article  Google Scholar 

  • Notomi M, Shinya A, Mitsugi S, Kuramochi E, Ryu HY (2004) Waveguides, resonators and their coupled elements in photonic crystal slabs. Opt Express 12:1551–1561

    Article  Google Scholar 

  • Potyrailo RA, Hobbs SE, Hiftje GM (1998) Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development. Fresenius J Anal Chem 362:349–373

    Article  Google Scholar 

  • Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381–386

    Article  Google Scholar 

  • Reyes DR, Lossifidis D, Auroux PA, Manz A (2002) Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem 74:2623–2636

    Article  Google Scholar 

  • Scarmozzino R, Gopinath A, Pregla R, Helfert S (2000) Numerical techniques for modeling guided-wave photonic devices. Sel Top Quantum Electron IEEE J 6:150–162

    Article  Google Scholar 

  • Smith NR, Abeysinghe DC, Haus JW, Heikenfeld J (2006) Agile wide-angle beam steering with electrowetting microprims. Opt Express 14:6557–6563

    Article  Google Scholar 

  • Song BS, Noda S, Asano T (2003) Photonic devices based on in-plane hetero photonic crystals. Science 300:1537–1537

    Article  Google Scholar 

  • Srinivasan K, Barclay PE, Borselli M, Painter O (2004) Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity., Phys Rev B 70:0813061–0813064

    Article  Google Scholar 

  • Stroock AD, Dertinger SKW, Ajdari A, Mezic I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295:647–651

    Article  Google Scholar 

  • Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298:580–584

    Article  Google Scholar 

  • Tomljenovic-Hanic S, de Sterke CM, Steel MJ (2006) Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration. Opt Express 14:12451–12456

    Article  Google Scholar 

  • Tong LM, Gattass RR, Ashcom JB, He S, Lou J, Shen M, Maxwell I, Mazur E (2003) Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426:816–819

    Article  Google Scholar 

  • Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116

    Article  Google Scholar 

  • Verpoorte E (2003) Chip vision-optics for microchips. Lab chip 3:42N–52N

    Article  Google Scholar 

  • Vlasov Y, O’Boyle M, Hamann HF, McNab SJ (2005) Active control of slow light on a chip with photonic crystal waveguides. Nature 438:65–69

    Article  Google Scholar 

  • Wright WH, Sonek GJ, Berns MW (1994) Parametric study of the forces on microspheres held by optical tweezers. Appl Opt 33:1735–1748

    Article  Google Scholar 

  • Zhao B, Moore JS, Beebe DJ (2001) Surface-directed liquid flow inside microchannels. Science 291:1023–1026

    Article  Google Scholar 

  • Zhu L, Huang Y, Yariv A (2005) Integrated microfluidic variable optical attenuator. Opt Express 13:9916–9921

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded under ARC research grant DP0556781 (Microfluidic photonics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Monat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monat, C., Domachuk, P., Grillet, C. et al. Optofluidics: a novel generation of reconfigurable and adaptive compact architectures. Microfluid Nanofluid 4, 81–95 (2008). https://doi.org/10.1007/s10404-007-0222-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-007-0222-z

Keywords

Navigation