Skip to main content
Log in

Slip flow in non-circular microchannels

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Microscale fluid dynamics has received intensive interest due to the emergence of Micro-Electro-Mechanical Systems (MEMS) technology. When the mean free path of the gas is comparable to the channel’s characteristic dimension, the continuum assumption is no longer valid and a velocity slip may occur at the duct walls. Non-circular cross sections are common channel shapes that can be produced by microfabrication. The non-circular microchannels have extensive practical applications in MEMS. Slip flow in non-circular microchannels has been examined and a simple model is proposed to predict the friction factor and Reynolds product fRe for slip flow in most non-circular microchannels. Through the selection of a characteristic length scale, the square root of cross-sectional area, the effect of duct shape has been minimized. The developed model has an accuracy of 10% for most common duct shapes. The developed model may be used to predict mass flow rate and pressure distribution of slip flow in non-circular microchannels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

flow area (m2)

a :

major semi-axis of ellipse or rectangle (m)

a :

base width of a trapezoidal or double-trapezoidal duct (m)

b :

minor semi-axis of ellipse or rectangle (m)

b :

height of a trapezoidal or double-trapezoidal duct (m)

c :

half focal length of ellipse (m)

c :

short side of a trapezoidal or double-trapezoidal duct (m)

D h :

hydraulic diameter = 4A/P

E(e):

complete elliptical integral of the second kind

e :

eccentricity \(={{\sqrt{1 - {b^{2}} \mathord{\left/ {\vphantom {{b^{2}} {a^{2}}}} \right. \kern-\nulldelimiterspace} {a^{2}}}}}\)

f :

Fanning friction factor \(={\tau /{\left({\tfrac{1}{2}\rho \bar{u}^{2}} \right)}}\)

Kn :

Knudsen number \({=\lambda \mathord{\left/{\vphantom {\lambda {\ell}}} \right. \kern-\nulldelimiterspace} {\ell}}\)

Kn * :

modified Knudsen number =Kn(2−σ)/σ

L :

channel length (m)

L + :

dimensionless channel length \({=L \mathord{\left/ {\vphantom {L {D_{h} {Re}}}} \right. \kern-\nulldelimiterspace} {D_{\rm h} {Re}}_{{D_{\rm h}}}}\)

ℓ:

arbitrary length scale

Ma :

Mach number = u/V s

\({\dot{m}}\) :

mass flow rate (kg/s)

P :

perimeter (m)

Po :

Poiseuille number, \({={\bar{\tau}{\kern 1pt} {\ell}} \mathord{\left/ {\vphantom {{\bar{\tau}{\kern 1pt} {\ell}} {\mu {\kern 1pt} \bar{u}}}} \right. \kern-\nulldelimiterspace} {\mu {\kern 1pt} \bar{u}}}\)

p :

pressure \({N \mathord{\left/{\vphantom {{\rm N} {{\rm m}^{2}}}} \right. \kern-\nulldelimiterspace} {m^{2}}}\)

R :

specific gas constant \({J \mathord{\left/ {\vphantom {{\rm J} {{\rm kg}{\kern 1pt} K}}} \right. \kern-\nulldelimiterspace} {kg{\kern 1pt} K}}\)

Re :

Reynolds number = \({{\ell}\bar{u}/\nu}\)

r :

dimensionless radius ratio = r i /r o

r i :

inner radius of a concentric duct (m)

r o :

outer radius of a concentric duct (m)

T :

temperature (K)

U :

velocity scale (m/s)

u :

velocity (m/s)

\({\bar{u}}\) :

average velocity (m/s)

V s :

speed of sound \({={\sqrt{\gamma RT}}}\)

X n :

function of x/a

x, y :

Cartesian coordinates (m)

z :

coordinate in flow direction (m)

α:

constants

γ:

ratio of specific heats

δ n :

eigenvalues

ε:

aspect ratio =b/a

η, ψ, z :

elliptic cylinder coordinates

η0 :

parameter of elliptic cylinder coordinates

λ:

molecular mean free path (m)

μ:

dynamic viscosity \({{N{\kern 1pt} s} \mathord{\left/ {\vphantom {{{\rm N}{\kern 1pt} {\rm s}} {{\rm m}^{2}}}} \right. \kern-\nulldelimiterspace} {m^{2}}}\)

ν:

kinematic viscosity (m2/s)

σ:

tangential momentum accommodation coefficient

τ:

wall shear stress \({{N{\kern 1pt}} \mathord{\left/ {\vphantom {{{\rm N}{\kern 1pt}} {{\rm m}^{2}}}} \right. \kern-\nulldelimiterspace} {m^{2}}}\)

Φ:

half angle rad

\({{\sqrt{A}}}\) :

based upon the square root of flow area

c :

continuum

D h :

based upon the hydraulic diameter

i :

inlet

ℓ:

based upon the arbitrary length ℓ

o :

outlet

E :

ellipse

R :

rectangle

References

  • Araki T, Kim MS, Hiroshi I, Suzuki K (2000) An experimental investigation of gaseous flow characteristics in microchannels. In: Celata GP et al. (Ed) Proceedings of international conference on heat transfer and transport phenomena in microscale. Begell House, New York, pp 155–161

  • Arkilic EB, Breuer KS, Schmidt MA (1994) Gaseous flow in microchannels. Application of Microfabrication to Fluid Mechanics, ASME vol FED-197, pp 57–66

  • Arkilic EB, Breuer KS, Schmidt MA (1997) Gaseous slip flow in long microchannels. J Microelectromech Syst 6:167–178

    Article  Google Scholar 

  • Aubert C, Colin S (2001) High-order boundary conditions for gaseous flows in rectangular microducts. Microscale Thermophys Eng 5:41–54

    Article  Google Scholar 

  • Barber RW, Emerson DR (2006) Challenges in modeling gas-phase flow in microchannels: from slip to transition. Heat Transfer Eng 27:3–12

    Article  Google Scholar 

  • Choi SB, Barron RF, Warrington RO (1991) Fluid flow and heat transfer in microtubes. Micromech Sensors Actuators Syst ASME 32:123–134

    Google Scholar 

  • Colin S, Lalonde P, Caen R (2004) Validation of a second-order slip flow model in rectangular microchannels. Heat Transfer Eng 25:23–30

    Article  Google Scholar 

  • Deisler RG (1964) An analysis of second-order slip flow and temperature-jump boundary conditions for rarefied gases. Int J Heat Mass Transfer 7:681–694

    Article  Google Scholar 

  • Duan ZP, Muzychka YS (2006) Slip flow in elliptic microchannels. Int J Thermal Sci (submitted)

  • Ebert WA, Sparrow EM (1965) Slip flow in rectangular and annular ducts. J Basic Eng 87:1018–1024

    Google Scholar 

  • Ged-el-Hak M (2001) MEMS handbook. CRC Press, Boca Raton

  • Harley J, Huang Y, Bau H, Zemel JN (1995) Gas flows in micro-channels. J Fluid Mech 284:257–274

    Article  Google Scholar 

  • Karniadakis GE, Beskok A, Aluru N (2005) Microflows and nanoflows. Springer, Berlin Heidelberg New York

  • Liu J, Tai YC, Ho CM (1995) MEMS for pressure distribution studies of gaseous flows in microchannels. In: IEEE nternational conference on micro electro mechanical systems. Amsterdam, Netherlands, pp 209–215

  • Maurer J, Tabeling P, Joseph P, Willaime H (2003) Second-order slip laws in microchannels for helium and nitrogen. Phys Fluids 15:2613–2621

    Article  Google Scholar 

  • Morini GL, Lorenzini M, Spiga M (2005) A criterion for experimental validation of slip-flow models for incompressible rarefied gases through microchannels. Microfluidics Nanofluidics 1:190–196

    Article  Google Scholar 

  • Muzychka YS, Yovanovich MM (2002) Laminar flow friction and heat transfer in non-circular ducts and channels: part I-hydrodynamic problem. Compact Heat Exchangers, A Festschrift on the 60th Birthday of Ramesh K. Shah, Grenoble, pp 123–130

  • Nguyen NT, Wereley ST (2003) Fundamentals and applications of microfluidics. Artech House, London

  • Pfahler J, Harley J, Bau H, Zemel JN (1990) Gas and liquid transport in small channels. Microstruct Sensors Actuators ASME 19:149–157

    Google Scholar 

  • Pfahler J, Harley J, Bau H, Zemel JN (1991) Gas and liquid flow in small channels. Micromech Sensors Actuators Syst ASME 32:49–58

    Google Scholar 

  • Rohsenow WM, Choi HY (1961) Heat, mass, and momentum transfer. Prentice-Hall Inc., New Jersey

    Google Scholar 

  • Schaaf SA, Chambre PL (1958) Flow of rarefied gases. Princeton University Press, New Jersey

    Google Scholar 

  • Wu S, Mai J, Zohar Y, Tai YC, Ho CM (1998) A suspended microchannel with integrated temperature sensors for high pressure flow studies. In: Proceedings of IEEE workshop on micro electro mechanical systems. Heidelberg, Germany, pp 87–92

Download references

Acknowledgments

The authors acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhipeng Duan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, Z., Muzychka, Y.S. Slip flow in non-circular microchannels. Microfluid Nanofluid 3, 473–484 (2007). https://doi.org/10.1007/s10404-006-0141-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-006-0141-4

Keywords

Navigation