Skip to main content

Advertisement

Log in

Current status and future perspective of sonodynamic therapy for cancer

  • Special Feature: Review Article
  • Cutting-edge therapeutic ultrasound-its basic and clinical medicine; the spread of ultrasound-based theranostics
  • Published:
Journal of Medical Ultrasonics Aims and scope Submit manuscript

Abstract

There is a tremendous need for prevention and effective treatment of cancer due to the associated morbidity and mortality. In this study, we introduce sonodynamic therapy (SDT), which is expected to be a new cancer treatment modality. SDT is a promising option for minimally invasive treatment of solid tumors and comprises three different components: sonosensitizers, ultrasound, and molecular oxygen. These components are harmless individually, but in combination they generate cytotoxic reactive oxygen species (ROS). We will explore the molecular mechanism by which SDT kills cancer cells, the class of sonosensitizers, drug delivery methods, and in vitro and in vivo studies. At the same time, we will highlight clinical applications for cancer treatment. The progress of SDT research suggests that it has the potential to become an advanced field of cancer treatment in clinical application. In this article, we will focus on the mechanism of action of SDT and its application to cancer treatment, and explain key factors to aid in developing strategies for future SDT development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SDT:

Sonodynamic therapy

ROS:

Reactive oxygen species

US:

Ultrasound

PDT:

Photodynamic therapy

HIFU:

High-intensity focused US

SL:

Sonoluminescence

O2 :

Superoxides

1O2 :

Singlet oxygen

OH:

Hydroxyl radicals:

Hp:

Hematoporphyrin

HMME:

Hematoporphyrin monomethyl ether

PpIX:

Protoporphyrin IX

Ce6:

Chlorine-e6

5-ALA:

5-Aminolevulinic acid

EB:

Erythrosin B

RB:

Rose bengal

NSAIDs:

Non-steroidal anti-inflammatory drugs

TiO2 :

Titanium oxide

SiO2 :

Silicon oxide

EPR:

Enhanced permeation and retention

DOX:

Doxorubicin

CsA:

Cyclosporine A

ADM:

Adriamycin

SF1:

Sonoflora 1

GcMAF:

Gc protein-derived macrophage-activating factor

References

  1. Rosenthal I, Sostaric JZ, Riesz P. Sonodynamic therapy—a review of the synergistic effects of drugs and ultrasound. Ultrason Sonochem. 2004;11:349–63.

    Article  CAS  PubMed  Google Scholar 

  2. Kuroki M, Hachimine K, Abe H, et al. Sonodynamic therapy of cancer using novel sonosensitizers. Anticancer Res. 2007;27:3673–7.

    CAS  PubMed  Google Scholar 

  3. Tachibana K, Feril LB Jr, Ikeda-Dantsuji Y. Sonodynamic therapy. Ultrasonics. 2008;48:253–9.

    Article  CAS  PubMed  Google Scholar 

  4. Trendowski M. The promise of sonodynamic therapy. Cancer Metastasis Rev. 2014;33:143–60.

    Article  CAS  PubMed  Google Scholar 

  5. Costley D, Mc Ewan C, Fowley C, et al. Treating cancer with sonodynamic therapy: a review. Int J Hyperth. 2015;31:107–17.

    Article  CAS  Google Scholar 

  6. Liu XH, Li S, Wang M, et al. Current status and future perspectives of sonodynamic therapy and sonosensitiers. Asian Pac J Cancer Prev. 2015;16:4489–92.

    Article  PubMed  Google Scholar 

  7. McHale AP, Callan JF, Nomikou N, et al. Sonodynamic therapy: concept, mechanism and application to cancer treatment. Adv Exp Med Biol. 2016;880:429–50.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Q, Bao C, Cai X, et al. Sonodynamic therapy-assisted immunotherapy: a novel modality for cancer treatment. Cancer Sci. 2018;109:1330–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lafond M, Yoshizawa S, Umemura S. Sonodynamic therapy: advances and challenges in clinical translation. J Ultrasound Med. 2019;38:567–80.

    Article  PubMed  Google Scholar 

  10. Liang S, Deng X, Ma P, et al. Recent advances in nanomaterial-assisted combinational sonodynamic cancer therapy. Adv Mater. 2020;32: e2003214.

    Article  PubMed  Google Scholar 

  11. Son S, Kim JH, Wang X, et al. Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem Soc Rev. 2020;49:3244–61.

    Article  CAS  PubMed  Google Scholar 

  12. Choi V, Rajora MA, Zheng G. Activating drugs with sound: mechanisms behind sonodynamic therapy and the role of nanomedicine. Bioconjug Chem. 2020;31:967–89.

    Article  CAS  PubMed  Google Scholar 

  13. Xu M, Zhou L, Zheng L, et al. Sonodynamic therapy-derived multimodal synergistic cancer therapy. Cancer Lett. 2021;497:229–42.

    Article  CAS  PubMed  Google Scholar 

  14. Meng Q, Chen B, Wu W, et al. Enhanced antitumor effects of low-frequency ultrasound combined with adriamycin on human leukemia multidrug resistance cell line K562/A02. Chin J Cancer. 2008;27:436–9.

    Google Scholar 

  15. Miller MW, Luque AE, Battaglia LF, et al. Biological and environmental factors affecting ultrasound-induced hemolysis in vitro: 1. HIV macROSytosis. Ultrasound Med Biol. 2003;29:77–91.

    Article  PubMed  Google Scholar 

  16. Zhao Y, Lu C, Zhou Z, et al. Enhancing chemotherapeutic drug inhibition on tumor growth by ultrasound: an in vivo experiment. J Drug Target. 2011;19:154–60.

    Article  CAS  PubMed  Google Scholar 

  17. Bai W, Shen E, Hu B. Induction of the apoptosis of cancer cell by sonodynamic therapy: a review. Chin J Cancer Res. 2012;24:368–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Masui T, Ota I, Kanno M. Low-intensity ultrasound enhances the anticancer activity of cetuximab in human head and neck cancer cells. Exp Ther Med. 2013;5:11–6.

    Article  CAS  PubMed  Google Scholar 

  19. Wang P, Wang X, Liu Q. Cell damage of hepatoma-22 cells exposed to continuous wave ultrasound. Tumori. 2012;98:523–31.

    Article  PubMed  Google Scholar 

  20. Wang X, Liu Q, Wang Z. Bioeffects of low-energy continuous ultrasound on isolated sarcoma 180 cells. Chemotherapy. 2009;55:253–61.

    Article  CAS  PubMed  Google Scholar 

  21. Endo S, Kudo N, Yamaguchi S, et al. Porphyrin derivatives-mediated sonodynamic therapy for malignant gliomas in vitro. Ultrasound Med Biol. 2015;41:2458–65.

    Article  PubMed  Google Scholar 

  22. Jeong EJ, Seo SJ, Ahn YJ, et al. Sonodynamically induced antitumor effects of 5-aminolevulinic acid and fractionated ultrasound irradiation in all orthotopic rat glioma model. Ultrasound Med Biol. 2012;38:2143–50.

    Article  PubMed  Google Scholar 

  23. Yumita N, Nishigaki R, Umemura K, et al. Hematoporpbyrin as a sensitizer of cell-damaging effect of’ ultrasound. Jpn J Cancer Res. 1989;80:219–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen H, Zhou X, Gao Y, et al. Recent progress in development of new sonosensitizers for sonodynamic cancer therapy. Drug Discov Today. 2014;19:502–9.

    Article  CAS  PubMed  Google Scholar 

  25. Kessel D, Jeffers R, Fowlkes JB, et al. Porphyrin-induced enhancement of ultrasound cytotoxicity. Int J Radiat Biol. 1994;66:221–8.

    Article  CAS  PubMed  Google Scholar 

  26. Yumita N, Nishigaki R, Umemura K, et al. Synergistic effect of ultrasound and hematoporphyrin on sarcoma. Jpn J Cancer Res. 1990;81:304–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Umemura S, Yumita N, Nishigaki R, et al. Mechanism of cell damage by ultrasound in combination with hematoporphyrin. Jpn J Cancer Res. 1990;81:962–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dubinsky TJ, Cuevas C, Dighe MK, et al. High-intensity focused ultrasound: current potential and oncologic applications. AJR Am J Roentgenol. 2008;190:191–9.

    Article  PubMed  Google Scholar 

  29. Hwang JH, Wang YN, Warren C, et al. Preclinical in vivo evaluation of an extracorporeal HIFU device for ablation of pancreatic tumors. Ultrasound Med Biol. 2009;35:967–75.

    Article  PubMed  Google Scholar 

  30. Sofuni A, Moriyasu F, Sano T, et al. The current potential of high-intensity focused ultrasound for pancreatic carcinoma. J Hepatobil Pancreat Sci. 2011;18:295–303.

    Article  Google Scholar 

  31. Sofuni A, Moriyasu F, Sano T, et al. Safety trial of high-intensity focused ultrasound therapy for pancreatic cancer. World J Gastroenterol. 2014;20:9570–7.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sofuni A, Asai Y, Tsuchiya T, et al. Novel therapeutic method for unresectable pancreatic cancer—the impact of the long-term research in therapeutic effect of high-intensity focused ultrasound (HIFU) therapy. Curr Oncol. 2021;28:4845–61.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Krasovitski B, Frenkel V, Shoham S, et al. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc Natl Acad Sci USA. 2011;108:3258–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Riesz P, Berdahl D, Christman CL. Free radical generation by ultrasound in aqueous and nonaqueous solutions. Environ Health Perspect. 1985;64:233–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Umemura S, Kawabata K, Sasaki K. In vitro and in vivo enhancement of sonodynamically active cavitation by second-harmonic superimposition. J Acoust Soc Am. 1997;101:569–77.

    Article  CAS  PubMed  Google Scholar 

  36. Kessel D, Lo J, Jeffers R, et al. Modes of photodynamic vs sonodynamic cytotoxicity. J Photochem Photobiol B. 1995;28:219–21.

    Article  CAS  PubMed  Google Scholar 

  37. Pickworth M, Dendy P, Leighton T, et al. Studies of the cavitational effects of clinical ultrasound by sonoluminescence: 2. Thresholds for sonoluminescence from a therapeutic ultrasound beam and the effect of temperature and duty cycle. Phys Med Biol. 1988;33:1249–60.

    Article  Google Scholar 

  38. Byun K, Kim KY, Kwak H. Sonoluminescence characteristics from micron and submicron bubbles. J Korean Phys Soc. 2005;47:1010–22.

    Google Scholar 

  39. Saksena T, Nyborg W. Sonoluminescence from stable cavitation. J Chem Phys. 1970;53:1722–34.

    Article  CAS  Google Scholar 

  40. Hachiminc K, Shibaguchi H, Kuroki M, et al. Sonodynamic therapy of cancer using a novel porphyrin derivative. DCPH–P–Na(l), which is devoid of photosensitivity. Cancer Sci. 2007;98:916–20.

    Article  Google Scholar 

  41. Lv Y, Fang M, Zheng J, et al. Low-intensity ultrasound combined with 5-aminolcvulinic acid administration in the treatment of human tongue squamous carcinoma. Cell Physiol Biochem. 2012;30:321–33.

    Article  CAS  PubMed  Google Scholar 

  42. Song W, Cui H, Zhang R, et al. Apoptosis of SAS cells induced by sonodynamic therapy using 5-aminolevulinic acid sonosensitizer. Anticancer Res. 2011;31:39–45.

    CAS  PubMed  Google Scholar 

  43. Bhatia RP, Dhawan S, Khanna HD, et al. Indirect evaluation of corneal apoptosis in contact lens wearers by estimation of nitric oxide and antioxidant enzymes in tears. Oman J Ophthalmol. 2010;3:66–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dai S, Xu C, Tian Y, et al. In vitro stimulation of calcium overload and apoptosis by sonodynamic therapy combined with hematoporphyrin monomethyl ether in C6 glioma cells. Oncol Lett. 2014;8:1675–81.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Su X, Wang P, Wang X, et al. Involvement of MAPK activation and ROS generation in human leukemia U937 cells undergoing apoptosis in response to sonodynamic therapy. Int J Radiat Bio. 2013;89:915–7.

    Article  CAS  Google Scholar 

  46. Su XM, Wang P, Yang S, et al. Sonodynamic therapy induces the interplay between apoptosis and autophagy in K562 cells through ROS. Int J Biochem Cell Biol. 2015;60:82–92.

    Article  CAS  PubMed  Google Scholar 

  47. Zhao P, Liu Q, Wang P, et al. Autophagic and apoptotic response to sonodynamic therapy induced cell damage in leukemia I1210 cells in vitro. Cancer Biother Radiopharm. 2011;26:209–18.

    Article  CAS  PubMed  Google Scholar 

  48. Wang X, Liu Q, Wang Z, et al. Role of autophagy in sonodynamic therapy-induced cytotoxicity in S180 cells. Ultrasound Med Biol. 2010;36:1933–6.

    Article  PubMed  Google Scholar 

  49. Wang X, Xiong D, Wang J, et al. Investigation on damage of DNA molecules under irradiation of low frequency ultrasound in the presence of hematoporphyrin-gallium (HP-Ga) complex. Ultrason Sonochem. 2008;15:761–7.

    Article  CAS  PubMed  Google Scholar 

  50. Su X, Wang X, et al. ERK inhibitor U0126 enhanced SDT- induced cytotoxicity of human leukemia U937 cells. Gen Phys Biophys. 2014;33:295–9.

    Article  CAS  Google Scholar 

  51. Dellinger M. Apoptosis or necrosis following Photofrin photosensitization: influence of the incubation protocol. Photochem Photobiol. 1996;64:182–7.

    Article  CAS  PubMed  Google Scholar 

  52. Oleinick NL, Morris RL, Belichenko I. The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci. 2002;1:1–21.

    Article  CAS  PubMed  Google Scholar 

  53. Castano AP, Mroz P, Hamblin MR. Photodynamic therapy and antitumour immunity. Nature Rev Cancer. 2006;6:535–45.

    Article  CAS  Google Scholar 

  54. Kessel D, Vicente MGH, Reiners JJ. Initiation of apoptosis and autophagy by photodynamic therapy. Lasers Surg Med. 2006;38:482–8.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development and response to therapy. Nature Rev Cancer. 2005;5:726–34.

    Article  CAS  Google Scholar 

  56. Muragaki Y, Akimoto J, Maruyama T, et al. Phase II clinical study on intraoperative photodynamic therapy with talaporfin sodium and semiconductor laser in patients with malignant brain tumors. J Neurosurg. 2013;119:845–52.

    Article  CAS  PubMed  Google Scholar 

  57. Song D, Yue W, Li Z, et al. Study of the mechanism of sonodynamic therapy in a rat glioma model. Onco Targets Ther. 2014;7:1801–10.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Li L, Chen Y, Wang X, et al. Comparison of protoporphyrin IX produced cell proliferation inhibition between human breast cancer MCF-7 and MDA-MB-231 cells. Pharmazie. 2014;69:621–8.

    CAS  PubMed  Google Scholar 

  59. Li Y, Wang P, Wang X, et al. Involvement of mitochondrial and reactive oxygen species in the sonodynamic toxicity of chlorin e6 in human leukumia K562 cells. Ultrasound Med Biol. 2014;40:990–1000.

    Article  PubMed  Google Scholar 

  60. Suzuki N, Okada K, Chida S, et al. Antitumor effect of acridine orange under ultrasonic irradiation in vitro. Anticancer Res. 2007;27:4179–84.

    CAS  PubMed  Google Scholar 

  61. Komori C, Okada K, Kawamura K, et al. The sonodynamic antitumor effect of methylene blue on sarcoma180 cells in vitro. Anticancer Res. 2009;29:2411–5.

    CAS  PubMed  Google Scholar 

  62. Urbanska K, Romanowska-Dixon B, Matuszak Z, et al. Indocyanine green as a prospective sensitizer for photodynamic therapy of melanomas. Acta Biochim Pol. 2002;49:387–91.

    Article  CAS  PubMed  Google Scholar 

  63. Nomikou N, Sterrett C, Arthur C, et al. The effects of ultrasound and light on indocyanine- green-treated tumour cells and tissues. Chem Med Chem. 2012;7:1465–71.

    Article  CAS  PubMed  Google Scholar 

  64. Ji C, Si J, Xu Y, et al. Mitochondria-targeted and ultrasound-responsive nanoparticles for oxygen and nitric oxide codelivery to reverse immunosuppression and enhance sonodynamic therapy for immune activation. Theranostics. 2021;11:8587–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wu P, Dong W, Guo X, et al. ROS-responsive blended nanoparticles: cascade-amplifying synergistic effects of sonochemotherapy with on-demand boosted drug release during SDT PROSess. Adv Healthc Mater. 2019;8: e1900720.

    Article  PubMed  Google Scholar 

  66. Haibo C, Ye T. GW24-e0411 The sonodynamic effect of curcumin on THP-1 cell-derived macrophages. Heart. 2013;99:A22–3.

    Article  Google Scholar 

  67. Zheng L, Sun X, Zhu X, et al. Apoptosis of THP–1 derived macrophages induced by sonodynamic therapy using a new sonosensitizer hydroxyl acetylated curcumin. PLoS One. 2014;9: e93133.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Liu JF. Non-steroidal anti-inflammatory drugs and cancer, with an especial focus on esophageal cancer. Asian Pac J Cancer Prev. 2011;12:3159–68.

    PubMed  Google Scholar 

  69. Sakusabe N, Okada K, Sato K, et al. Enhanced sonodynamic antitumor effect of ultrasound in the presence of nonsteroidal anti-inflammatory drugs. Jpn J Cancer Res. 1999;90:1146–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Okada K, Itoi E, Nakajima M, et al. Enhance antitumor effect of ultrasound in the presence of piroxicam in a mouse air pouch model. Jpn J Cancer Res. 2002;93:216–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Daniele RG, Rolim CMB, Farooqi AA. Nanoparticle induced oxidative stress in cancer cells: adding new pieces to an incomplete jigsaw puzzle. Asian Pac J Cancer Prev. 2014;12:4739–43.

    Google Scholar 

  72. Ogi H, Hirao M, Shimoyama M. Activation of TiO2 photocatalyst by single–bubble sonoluminescence for water treatment. Ultrasonics. 2002;40:649–50.

    Article  CAS  PubMed  Google Scholar 

  73. Kubota Y, Shuin T, Kawasaki C, et al. Photokilling of T-24 human bladder cancer cells with titanium dioxide. Br J Cancer. 1994;70:1107–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. You DG, Deepagan VG, Um W, et al. ROS-generating TiO2 nanoparticles for non-invasive sonodynamic therapy of cancer. Sci Rep. 2016;6:23200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ninomiya K, Noda K, Ogino C, et al. Enhanced OH radical generation by dual-frequency, ultrasound with TiO2 nanoparticles: its application to targeted sonodynamic therapy. Ultrason Sonochem. 2014;21:289–94.

    Article  CAS  PubMed  Google Scholar 

  76. Harada Y, Ogawa K, Irie Y, et al. Ultrasound activation of TiO2 in melanoma tumors. J Control Release. 2011;49:190–5.

    Article  Google Scholar 

  77. Osmiiikina LA, Sivakov VA, Mysov GA, et al. Nanoparticles prepared from porous silicon nanowires for bio-imaging and sonodynamic therapy. Nanoscale Res Lett. 2014;9:463.

    Article  Google Scholar 

  78. Shanei A, Sazgarnia A, Meibodi NT, et al. Sonodynamic therapy using protoporphyrin IX conjugated to gold nanoparticles: an in vivo study on a colon tumor model. Iran J Basic Med Sci. 2012;15:759–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Narang AS, Varia S. Role of tumor vascular architecture in drug delivery. Adv Drug Deliv Rev. 2011;63:640–58.

    Article  CAS  PubMed  Google Scholar 

  80. Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev. 2011;63:131–5.

    Article  CAS  PubMed  Google Scholar 

  81. Liang L, Xie S, Jiang L, et al. The combined effects of hematoporphyrin monomethyl ether-SDT and doxorubicin on the proliferation of QBC939 cell lines. Ultrasound Med Biol. 2013;39:146–60.

    Article  PubMed  Google Scholar 

  82. Yoshida T, Kondo T, Ogawa R, et al. Combination of doxorubicin and low–intensity ultrasound causes a synergistic enhancement in cell killing and all additive enhancement in apoptosis induction in human lymphoma U937 cells. Cancer Chemother Pharmacol. 2008;61:559–67.

    Article  CAS  PubMed  Google Scholar 

  83. Ren Y, Wang R, Liu Y, et al. A hematoporphyrin-based delivery system for drug resistance reversal and tumor ablation. Biomaterials. 2014;35:2462–70.

    Article  CAS  PubMed  Google Scholar 

  84. Yang H, Liu YH, Xu L, et al. Efficacy of permanent iodine-125 seed implants and gemcitabine chemotherapy in patients with platinum-resistant recurrent ovarian carcinoma. Asian Pac J Cancer Prev. 2014;20:9009–13.

    Article  Google Scholar 

  85. Yu T, Yang Y, Liu S, et al. Ultrasound increases DNA damage attributable to cisplatin in cisplatin-resistant human ovarian cancer cells. Ultrasound Obstet Gynecol. 2009;33:355–9.

    Article  CAS  PubMed  Google Scholar 

  86. Gao HJ, Zhang WM, Wang XH, et al. Adriamycin enhances the sonodynamic effect of chlorin e6 against the proliferation of human breast cancer MDA-MB-231 cells in vitro. J Southern Med Uni. 2010;30:2291–4.

    CAS  Google Scholar 

  87. Yue W, Chen L, Yu L, et al. Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice. Nat Commun. 2019;10:2025.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Horise Y, Maeda M, Konishi Y, et al. Sonodynamic therapy with anticancer micelles and high-intensity focused ultrasound in treatment of canine cancer. Front Pharmacol. 2019;21:545.

    Article  Google Scholar 

  89. Yumita N, Sasaki K, Umemura S, et al. Sonodynamically induced antitumor effect of a gallium–porphyrin complex, ATX-70. Jpn J Cancer Res. 1996;87:310–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yumita N, Okuyama N, Sasaki K, et al. Sonodynamic therapy on chemically induced mammary tumor: pharmacokinetics, tissue distribution and sonodynamically induced antitumor effect of gallium–porphyrin complex ATX–70. Cancer Chemother Pharmacol. 2007;60:891–7.

    Article  CAS  PubMed  Google Scholar 

  91. Yumita N, Okuyama N, Sasaki K, et al. Sonodynamic therapy on chemically induced mammary tumor: pharmacokinetics, tissue distribution and sonodynamically induced antitumor effect of porfimer sodium. Cancer Sci. 2004;95:765–9.

    Article  CAS  PubMed  Google Scholar 

  92. Wang X, Lewis TJ, Mitchell D. The tumoricidal effect of sonodynamic therapy (SDT) on S-180 sarcoma in mice. Integr Cancer Ther. 2008;7:96–102.

    Article  CAS  Google Scholar 

  93. Xiong W, Wang P, Hu J, et al. A new sensitizer DVDMS combined with multiple focused ultrasound treatments: an effective antitumor strategy. Sci Rep. 2015;5:17485.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wang H, Wang P, Li L, et al. Microbubbles enhance the antitumor effects of sinoporphyrin sodium mediated sonodynamic therapy both in vitro and in vivo. Int J Biol Sci. 2015;11:1401–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu Y, Wang P, Liu Q, et al. Sinoporphyrin sodium triggered sonophotodynamic effects on breast cancer both in vitro and in vivo. Ultrason Sonochem. 2016;31:437–48.

    Article  CAS  PubMed  Google Scholar 

  96. Hu Z, Fan H, Lv G, et al. 5-Aminolevulinic acid–mediated sonodynamic therapy induces anti-tumor effects in malignant melanoma via p53-miR-34a-Sirt1 axis. J Dermatol Sci. 2015;79:155–62.

    Article  CAS  PubMed  Google Scholar 

  97. Li Y, Zhou Q, Hu Z, et al. 5-Aminolevulinic acid-based sonodynamic therapy induces the apoptosis of osteosarcoma in mice. PLoS One. 2015;10: e0132074.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Shimamura Y, Tamatani D, Kuniyasu S, et al. 5-Aminolevulinic acid enhances ultrasound-mediated antitumor activity via mitochondrial oxidative damage in breast cancer. Anticancer Res. 2016;36:3607–12.

    CAS  PubMed  Google Scholar 

  99. Osaki T, Yokoe I, Uto Y, et al. Bleomycin enhances the efficacy of sonodynamic therapy using aluminum phthalocyanine disulfonate. Ultrason Sonochem. 2016;28:161–8.

    Article  CAS  PubMed  Google Scholar 

  100. Osaki T, Ono M, Uto Y, et al. Sonodynamic therapy using 5-aminolevulinic acid enhances the efficacy of bleomycin. Ultrasonics. 2016;67:76–84.

    Article  CAS  PubMed  Google Scholar 

  101. Ju D, Yamaguchi F, Zhan G, et al. Hyperthermotherapy enhances antitumor effect of 5-aminolevulinic acid-mediated sonodynamic therapy with activation of caspase-dependent apoptotic pathway in human glioma. Tumour Biol. 2016;37:10415–26.

    Article  CAS  PubMed  Google Scholar 

  102. Wang X, Zhang W, Xu Z, et al. Sonodynamic and photodynamic therapy in advanced breast carcinoma: a report of 3 cases. Integr Cancer Ther. 2009;8:283–7.

    Article  PubMed  Google Scholar 

  103. Kenyon JN, Fulle RJ, Lewis TJ. Activated cancer therapy using light and ultrasound: a case series of sonodynamic photodynamic therapy in 115 patients over a 4-year period. Curr Drug Therapy. 2009;4:179–93.

    Article  CAS  Google Scholar 

  104. Inui T, Makita K, Miura H, et al. Case report: a breast cancer patient treated with GcMAF, sonodynamic therapy and hormone therapy. Anticancer Res. 2014;34:4589–93.

    PubMed  Google Scholar 

  105. Kisker O, Onizuka S, Becker CM, et al. Vitamin D binding protein–macrophage activating factor (DBP–MAF) inhibits angiogenesis and tumor growth in mice. Neoplasia. 2003;5:32–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tachibana K. Molecular diagnosis and treatment using a new ultrasound contrast agent. Gan To Kagaku Ryoho. 2013;40:291.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Yoshihiro Muragaki at Tokyo Woman Medical University, Faculty of Advanced Techno-Surgery, and Prof. Shin Yoshizawa and Prof. Shinichiro Umemura at Tohoku University, Graduate School of Biomedical Engineering. We would like to also thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, A.S.; data curation, A.S.; investigation, A.S.; supervision, T.I.; validation, A.T. and T.I.; writing—original draft, A.S.; writing—review and editing, A.S. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Atsushi Sofuni.

Ethics declarations

Conflict of interest

Atsushi Sofuni and Takao Itoi declare that they have no conflicts of interest.

Ethical statements

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and later versions. Informed consent was obtained from all the patients for being included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sofuni, A., Itoi, T. Current status and future perspective of sonodynamic therapy for cancer. J Med Ultrasonics (2022). https://doi.org/10.1007/s10396-022-01263-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10396-022-01263-x

Keywords

Navigation