Skip to main content
Log in

A review of conventional and newer generation microwave ablation systems for hepatocellular carcinoma

  • Special Feature: Review Article
  • Differential diagnosis and treatment of hepatocellular carcinoma: the role of ultrasound
  • Published:
Journal of Medical Ultrasonics Aims and scope Submit manuscript

Abstract

Although microwave ablation (MWA) exhibits a high thermal efficiency, the major limitation of conventional MWA systems is the lack of predictability of the ablation zone size and shape. Therefore, a specific newer generation MWA system, The Emprint™ Ablation System with Thermosphere™ Technology, was designed to create predictable large spherical zones of ablation that are not impacted by varying tissue environments. The time required for ablation with MWA systems is short, and the shape of the necrosis is elliptical with the older systems and spherical with the new system. In addition, because MWA has no heat-sink effect, it can be used to ablate tumors adjacent to major vessels. Although these factors yield a large ablation volume and result in good local control, excessive ablation of liver tissue and unexpected ablation of surrounding organs are possible. Therefore, MWA should be carefully performed. This review highlights the efficacy and complications of MWA performed with conventional systems and the newer generation system in patients with hepatocellular carcinoma (HCC). MWA with the newer generation system seems to be a promising treatment option for large HCCs and secondary hepatic malignancies, with several advantages over other available ablation techniques, including conventional MWA. However, further randomized controlled trials are necessary to fully clarify the benefits and pitfalls of this new system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BCLC:

Barcelona clinic liver cancer

CEUS:

Contrast-enhanced ultrasonography

CT:

Computed tomography

ECOG:

Eastern Cooperative Oncology Group

EM:

Electromagnetic

HCC:

Hepatocellular carcinoma

HR:

Hepatic resection

MWA:

Microwave ablation

MRI:

Magnetic resonance imaging

NICE:

National Institute for Health and Care Excellence

OLT:

Orthotopic liver transplantation

OS:

Overall survival

PLA:

Percutaneous local ablation

RCT:

Randomized controlled trial

RFA:

Radiofrequency ablation

RFS:

Relapse-free survival

RI:

Roundness index

SMWA:

Stereotactic image-guided microwave ablation

TACE:

Transarterial chemoembolization

US:

Ultrasonography

References

  1. Bruix J, Reig M, Sherman M. Evidence-based diagnosis, staging, and treatment of patients with hepatocellular carcinoma. Gastroenterology. 2016;150:835–53.

    PubMed  Google Scholar 

  2. Bruix J, Sherman M, American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53:1020–2.

    PubMed  PubMed Central  Google Scholar 

  3. European Association For The Study Of The Liver1; European Organisation For Research And Treatment Of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2012;56:908–43.

    Google Scholar 

  4. Bruix J, Sherman M, Practice Guidelines Committee, American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma. Hepatology. 2005;42:1208–36.

    Google Scholar 

  5. Tan CH, Low SC, Thng CH. APASL and AASLD consensus guidelines on imaging diagnosis of hepatocellular carcinoma: a review. Int J Hepatol. 2011;2011:1–11.

    Google Scholar 

  6. Tabuse K, Katsumi M, Kobayashi Y, et al. Microwave surgery: hepatectomy using a microwave tissue coagulator. World J Surg. 1985;9:136–43.

    CAS  PubMed  Google Scholar 

  7. Ahmed M. Image-guided tumor ablation: standardization of terminology and reporting criteria—a 10-year update. RSNA 2014. J Vasc Interv Radiol. 2014;25:1706–8.

    PubMed  Google Scholar 

  8. Liang P, Wang Y. Microwave ablation of hepatocellular carcinoma. Oncol Suppl. 2007;72:124–31.

    Google Scholar 

  9. Knavel EM, Brace CL. Tumor ablation: common modalities and general practices. Tech Vasc Interv Radiol. 2013;16:192–200.

    PubMed  PubMed Central  Google Scholar 

  10. Simon CJ, Dupuy DE, Mayo-Smith WW. Microwave ablation: principles and applications. Radiographics. 2005;25:69–83.

    Google Scholar 

  11. Tanaka M, Sato M. Microwave heating of water, ice, and saline solution: molecular dynamics study. J Chem Phys. 2007;126:034509.

    PubMed  Google Scholar 

  12. Liang P, Yu J, Lu MD, et al. Practice guidelines for ultrasound-guided percutaneous microwave ablation for hepatic malignancy. World J Gastroenterol. 2013;19:5430–8.

    PubMed  PubMed Central  Google Scholar 

  13. Sun Y, Wang Y, Ni X, et al. Comparison of ablation zone between 915- and 2,450-MHz cooled-shaft microwave antenna: results in vivo porcine livers. AJR Am J Roentgenol. 2009;192:511–4.

    PubMed  Google Scholar 

  14. Alonzo M, Bos A, Bennett S, et al. The Emprint™ Ablation System with Thermosphere™ Technology: one of the newer next-generation microwave ablation technologies. Semin Interv Radiol. 2015;32:335–8.

    Google Scholar 

  15. Saccomandi P, Schena E, Massaroni C, et al. Temperature monitoring during microwave ablation in ex vivo porcine livers. Eur J Surg Oncol. 2015;41:1699–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hübner F, Schreiner R, Reimann C, et al. Ex vivo validation of microwave thermal ablation simulation using different flow coefficients in the porcine liver. Med Eng Phys. 2019;66:56–64.

    PubMed  Google Scholar 

  17. Wang T, Lu XJ, Chi JC, et al. Microwave ablation of hepatocellular carcinoma as first-line treatment: long term outcomes and prognostic factors in 221 patients. Sci Rep. 2016;6:32728.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Takayama T, Makuuchi M, Hirohashi S, et al. Early hepatocellular carcinoma as an entity with a high cure rate of surgical cure. Hepatology. 1998;28:1241e6.

    Google Scholar 

  19. Lau WY, Lai EC. The current role of radiofrequency ablation in the management of hepatocellular carcinoma: a systematic review. Ann Surg. 2009;249:20e25.

    Google Scholar 

  20. Liang P, Wang Y. Microwave ablation of hepatocellular carcinoma. Oncology. 2007;72:124e131.

    Google Scholar 

  21. Groeschl RT, Pilgrim CH, Hanna EM, et al. Microwave ablation for hepatic malignancies: a multi-institutional analysis. Ann Surg. 2014;259:1195e1200.

    Google Scholar 

  22. Ryu T, Takami Y, Wada Y, et al. Hepatic resection versus operative microwave ablation for single hepatocellular carcinoma 5 cm: a propensity score-matched analysis. Surgery. 2019;166:254–62.

    PubMed  Google Scholar 

  23. Xu J, Zhao Y. Comparison of percutaneous microwave ablation and laparoscopic resection in the prognosis of liver cancer. Int J Clin Exp Pathol. 2015;8:11665–9.

    PubMed  PubMed Central  Google Scholar 

  24. Wang ZL, Liang P, Dong BW, et al. Prognostic factors and recurrence of small hepatocellular carcinoma after hepatic resection or microwave ablation: a retrospective study. J Gastrointest Surg. 2008;12:327–37.

    PubMed  Google Scholar 

  25. Takami Y, Ryu T, Wada Y, et al. Evaluation of intraoperative microwave coagulo-necrotic therapy (MCN) for hepatocellular carcinoma: a single center experience of 719 consecutive cases. J Hepatobiliary Pancreat Sci. 2013;20:332–41.

    PubMed  Google Scholar 

  26. Shi J, Sun Q, Wang Y, et al. Comparison of microwave ablation and surgical resection for treatment of hepatocellular carcinomas conforming to Milan criteria. J Gastroenterol Hepatol. 2014;29:1500–7.

    PubMed  Google Scholar 

  27. Li W, Zhou X, Huang Z, et al. Short-term and long-term outcomes of laparoscopic hepatectomy, microwave ablation, and open hepatectomy for small hepatocellular carcinoma: a 5-year experience in a single center. Hepatol Res. 2017;47:650–7.

    CAS  PubMed  Google Scholar 

  28. Zhang QB, Zhang XG, Jiang RD, et al. Microwave ablation versus hepatic resection for the treatment of hepatocellular carcinoma and oesophageal variceal bleeding in cirrhotic patients. Int J Hyperthermia. 2017;33:255–62.

    CAS  PubMed  Google Scholar 

  29. Chong CCN, Lee KF, Chu CM, et al. Microwave ablation provides better survival than liver resection for hepatocellular carcinoma in patients with borderline liver function: application of ALBI score to patient selection. HPB (Oxford). 2018;20:546–54.

    Google Scholar 

  30. Glassberg MB, Ghosh S, Clymer JW, et al. Microwave ablation compared with hepatic resection for the treatment of hepatocellular carcinoma and liver metastases: a systematic review and meta-analysis. World J Surg Oncol. 2019;17:98.

    PubMed  PubMed Central  Google Scholar 

  31. Revel-Mouroz P, Otal P, Jaffro M, et al. Other non-surgical treatments for liver cancer. Rep Pract Oncol Radiother. 2017;22:181–92.

    PubMed  PubMed Central  Google Scholar 

  32. Salhab M, Canelo R. An overview of evidence-based management of hepatocellular carcinoma: a meta-analysis. J Cancer Res Ther. 2011;7:463–75.

    CAS  PubMed  Google Scholar 

  33. Mulier S, Ni Y, Jamart J, et al. Local recurrence after hepatic radiofrequency coagulation: multivariate meta-analysis and review of contributing factors. Ann Surg. 2005;242:158–71.

    PubMed  PubMed Central  Google Scholar 

  34. Lu MD, Xu HX, Xie XY, et al. Percutaneous microwave and radiofrequency ablation for hepatocellular carcinoma: a retrospective comparative study. J Gastroenterol. 2005;40:1054–60.

    PubMed  Google Scholar 

  35. Ohmoto K, Yoshioka N, Tomiyama Y, et al. Comparison of therapeutic effects between radiofrequency ablation and percutaneous microwave coagulation therapy for small hepatocellular carcinomas. J Gastroenterol Hepatol. 2009;24:223–7.

    PubMed  Google Scholar 

  36. Simo KA, Sereika SE, Newton KN, et al. Laparoscopic- assisted microwave ablation for hepatocellular carcinoma: safety and efficacy in comparison with radiofrequency ablation. J Surg Oncol. 2011;104:822–9.

    PubMed  Google Scholar 

  37. Zhang L, Wang N, Shen Q, et al. Therapeutic efficacy of percutaneous radiofrequency ablation versus microwave ablation for hepatocellular carcinoma. PLoS One. 2013;8:e76119.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ding J, Jing X, Liu J, et al. Comparison of two different thermal techniques for the treatment of hepatocellular carcinoma. Eur J Radiol. 2013;82:1379–84.

    PubMed  Google Scholar 

  39. Vogl TJ, Farshid P, Naguib NN, et al. Ablation therapy of hepatocellular carcinoma: a comparative study between radiofrequency and microwave ablation. Abdom Imaging. 2015;40:1829–37.

    PubMed  Google Scholar 

  40. Shibata T, Shibata T, Maetani Y, et al. Radiofrequency ablation for small hepatocellular carcinoma: prospective comparison of internally cooled electrode and expandable electrode. Radiology. 2006;238:346–53.

    PubMed  Google Scholar 

  41. Abdelaziz A, Elbaz T, Shousha HI, et al. Efficacy and survival analysis of percutaneous radiofrequency versus microwave ablation for hepatocellular carcinoma: an Egyptian multidisciplinary clinic experience. Surg Endosc. 2014;28:3429–34.

    PubMed  Google Scholar 

  42. Tian WS, Kuang M, Lu MD, et al. A randomised comparative trial on liver tumors treated with ultrasound-guided percutaneous radiofrequency versus microwave ablation. Chin J Hepatobiliary Surg. 2014;20:119–22.

    Google Scholar 

  43. Martin RC, Scoggins CR, McMasters KM. Safety and efficacy of microwave ablation of hepatic tumors: a prospective review of a 5 year experience. Ann Surg Oncol. 2010;17:171–8.

    PubMed  Google Scholar 

  44. Xu HX, Xie XY, Lu MD, et al. Ultrasoundguided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation. Clin Radiol. 2004;59:53–61.

    PubMed  Google Scholar 

  45. Ierardi AM, Mangano A, Floridi C, et al. A new system of microwave ablation at 2450 MHz: preliminary experience. Updates Surg. 2015;67:39–45.

    PubMed  Google Scholar 

  46. De Cobelli F, Marra P, Ratti F, et al. Microwave ablation of liver malignancies: comparison of effects and early outcomes of percutaneous and intraoperative approaches with different liver conditions: new advances in interventional oncology: state of the art. Med Oncol. 2017;34:49.

    PubMed  Google Scholar 

  47. Imajo K, Tomeno W, Kanezaki M, et al. New microwave ablation system for unresectable liver tumors that forms large, spherical ablation zones. J Gastroenterol Hepatol. 2018;33:2007–14.

    PubMed  Google Scholar 

  48. Zhang SY, Shang SQ, Han YQ, et al. Ex vivo and in vivo monitoring and characterization of thermal lesions by high-intensity focused ultrasound and microwave ablation using ultrasonic Nakagami imaging. IEEE Trans Med Imaging. 2018;37:1701–10.

    PubMed  Google Scholar 

  49. Goldberg SN, Gazelle GS, Mueller PR. Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance. Am J Roentgenol. 2000;174:323–31.

    CAS  Google Scholar 

  50. Lopresto V, Pinto R, Farina L, et al. Treatment planning in Microwave Thermal Ablation: clinical gaps and recent research advances. Int J Hyperthermia. 2017;33:83–100.

    CAS  PubMed  Google Scholar 

  51. Gao H, Wang X, Wu S, et al. Conformal coverage of liver tumors by the thermal coagulation zone in 2450-MHz microwave ablation. Int J Hyperthermia. 2019;36:591–605.

    PubMed  Google Scholar 

  52. Liu F, Liang P, Yu XL, et al. A three-dimensional visualization preoperative treatment planning system in microwave ablation for liver cancer: a preliminary clinical application. Int J Hyperthermia. 2013;29:671–7.

    PubMed  Google Scholar 

  53. Mauri GL, Cova S, De Beni T, et al. Real-time US-CT/MRI image fusion for guidance of thermal ablation of liver tumors undetectable with US: results in 295 cases. Cardiovasc Interv Radiol. 2015;38:143–51.

    Google Scholar 

  54. Lachenmayer A, Tinguely P, Maurer MH, et al. Stereotactic image-guided microwave ablation of hepatocellular carcinoma using a computer-assisted navigation system. Liver Int. 2019;39:1975–85.

    PubMed  Google Scholar 

  55. Kettenbach J, Kronreif G. Robotic systems for percutaneous needle-guided interventions. Minim Invasive Ther Allied Technol. 2015;24:45–53.

    PubMed  Google Scholar 

  56. Cleary K, Melzer A, Watson V, et al. Interventional robotic systems: applications and technology state-of-the-art. Minim Invasive Ther Allied Technol. 2006;15:101–13.

    PubMed  PubMed Central  Google Scholar 

  57. Hiraki T, Matsuno T, Kamegawa T, et al. Robotic insertion of various ablation needles under computed tomography guidance: accuracy in animal experiments. Eur J Radiol. 2018;105:162–7.

    PubMed  Google Scholar 

  58. Heerink WJ, Ruiter SJS, Pennings JP, et al. Robotic versus freehand needle positioning in CT-guided ablation of liver tumors: a randomized controlled trial. Radiology. 2019;290:826–32.

    PubMed  Google Scholar 

  59. Buscarini L, Buscarini E, Di Stasi M, et al. Percutaneous radiofrequency thermal ablation combined with transcatheter arterial embolization in the treatment of large hepatocellular carcinoma. Ultraschall Med. 1999;20:47–53.

    CAS  PubMed  Google Scholar 

  60. Bloomston M, Binitie O, Fraiji E, et al. Transcatheter arterial chemoembolization with or without radiofrequency ablation in the management of patients with advanced hepatic malignancy. Am Surg. 2002;68:827–31.

    PubMed  Google Scholar 

  61. Seki T, Tamai T, Nakagawa T, et al. Combination therapy with transcatheter arterial chemoembolization and percutaneous microwave coagulation therapy for hepatocellular carcinoma. Cancer. 2000;89:1245–51.

    CAS  PubMed  Google Scholar 

  62. Yang WZ, Jiang N, Huang N, et al. Combined therapy with transcatheter arterial chemoembolization and percutaneous microwave coagulation for small hepatocellular carcinoma. World J Gastroenterol. 2009;15:748–52.

    PubMed  PubMed Central  Google Scholar 

  63. Yi Y, Zhang Y, Wei Q, et al. Radiofrequency ablation or microwave ablation combined with transcatheter arterial chemoembolization in treatment of hepatocellular carcinoma by comparing with radiofrequency ablation alone. Chin J Cancer Res. 2014;26:112–8.

    PubMed  PubMed Central  Google Scholar 

  64. Xu LF, Sun HL, Chen YT, et al. Large primary hepatocellular carcinoma: transarterial chemoembolization monotherapy versus combined transarterial chemoembolization-percutaneous microwave coagulation therapy. J Gastroenterol Hepatol. 2013;28:456–63.

    CAS  PubMed  Google Scholar 

  65. Liu C, Liang P, Liu F, et al. MWA combined with TACE as a combined therapy for unresectable large-sized hepotocellular carcinoma. Int J Hyperthermia. 2011;27:654–62.

    PubMed  Google Scholar 

  66. Ginsburg M, Zivin SP, Wroblewski K, et al. Comparison of combination therapies in the management of hepatocellular carcinoma: transarterial chemoembolization with radiofrequency ablation versus microwave ablation. J Vasc Interv Radiol. 2015;26:330–41.

    PubMed  Google Scholar 

  67. Li W, Man W, Guo H, et al. Clinical study of transcatheter arterial chemoembolization combined with microwave ablation in the treatment of advanced hepatocellular carcinoma. J Cancer Res Ther. 2016;12:217–20.

    Google Scholar 

  68. Izzo F, Granata V, Grassi R, et al. Radiofrequency ablation and microwave ablation in liver tumors: an update. Oncologist. 2019;24:e990–1005.

    PubMed  PubMed Central  Google Scholar 

  69. Nakazawa T, Kokubu S, Shibuya A, et al. Radiofrequency ablation of hepatocellular carcinoma: correlation between local tumor progression after ablation and ablative margin. AJR Am J Roentgenol. 2007;188:480–8.

    PubMed  Google Scholar 

  70. Kim YS, Rhim H, Cho OK, et al. Intrahepatic recurrence after percutaneous radiofrequency ablation of hepatocellular carcinoma: analysis of the pattern and risk factors. Eur J Radiol. 2006;59:432–41.

    CAS  PubMed  Google Scholar 

  71. Bouda D, Lagadec M, Alba CG, et al. Imaging review of hepatocellular carcinoma after thermal ablation: the good, the bad, and the ugly. J Magn Reson Imaging. 2016;44:1070–90.

    PubMed  Google Scholar 

  72. Winters SD, Jackson S, Armstrong GA, et al. Value of subtraction MRI in assessing treatment response following image-guided loco-regional therapies for hepatocellular carcinoma. Clin Radiol. 2012;67:649–55.

    CAS  PubMed  Google Scholar 

  73. Gordic S, Corcuera-Solano I, Stueck A, et al. Evaluation of HCC response to locoregional therapy: validation of MRI-based response criteria versus explant pathology. J Hepatol. 2017;67:1213–21.

    PubMed  Google Scholar 

  74. Kim SH, Won KS, Choi BW, et al. Usefulness of F-18 FDG PET/CT in the evaluation of early treatment response after interventional therapy for hepatocellular carcinoma. Nucl Med Mol Imaging. 2012;46:102–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Makino Y, Imai Y, Igura T, et al. Comparative evaluation of three-dimensional Gd-EOB-DTPA-enhanced MR fusion imaging with CT fusion imaging in the assessment of treatment effect of radiofrequency ablation of hepatocellular carcinoma. Abdom Imaging. 2015;40:102–11.

    PubMed  Google Scholar 

  76. Tang H, Tang Y, Hong J, et al. A measure to assess the ablative margin using 3D-CT image fusion after radiofrequency ablation of hepatocellular carcinoma. HPB (Oxford). 2015;17:318–25.

    Google Scholar 

  77. An C, Li X, Liang P, et al. A tumor map generated from three-dimensional visualization of image fusion for the assessment of microwave ablation of hepatocellular carcinoma: a preliminary study. Cancer Manag Res. 2019;15:1569–78.

    Google Scholar 

  78. Microwave ablation for treating liver metastases | Guidance and guidelines | NICE [Internet]. https://www.nice.org.uk/guidance/ipg553 (cited 3 Oct 2018).

  79. Livraghi T, Meloni F, Solbiati L, Collaborative Italian Group using AMICA system, et al. Complications of microwave ablation for liver tumors: results of a multicenter study. Cardiovasc Interv Radiol. 2012;35:868–74.

    Google Scholar 

  80. Poggi G, Tosoratti N, Montagna B, et al. Microwave ablation of hepatocellular carcinoma. World J Hepatol. 2015;7:2578–89.

    PubMed  PubMed Central  Google Scholar 

  81. Liang P, Wang Y, Yu X, et al. Malignant liver tumors: treatment with percutaneous microwave ablation—complications among cohort of 1136 patients. Radiology. 2009;251:933–40.

    PubMed  Google Scholar 

  82. Chiang J, Cristescu M, Lee MH, et al. Effects of microwave ablation on arterial and venous vasculature after treatment of hepatocellular carcinoma. Radiology. 2016;281:617–24.

    PubMed  PubMed Central  Google Scholar 

  83. Fang C, Cortis K, Yusuf GT, et al. Complications from percutaneous microwave ablation of liver tumours: a pictorial review. Br J Radiol. 2019;92:20180864.

    PubMed  Google Scholar 

  84. Soliman AF, Abouelkhair MM, Hasab Allah MS, et al. Efficacy and safety of microwave ablation (MWA) for hepatocellular carcinoma (HCC) in difficult anatomical sites in egyptian patients with liver cirrhosis. Asian Pac J Cancer Prev. 2019;25:295–301.

    Google Scholar 

  85. Bucci OM, Cavagnaro M, Crocco L, et al. Microwave ablation monitoring via microwave tomography: a numerical feasibility assessment. In: Proceedings of the 2016 10th European conference on antennas and propagation (EuCAP), Davos, 10–15 April 2016, pp. 1–5.

  86. Bellizzi GG, Crocco L, Cavagnaro M, et al. A full-wave numerical assessment of microwave tomography for monitoring cancer ablation. In: Proceedings of the 2017 11th European conference on antennas and propagation (EUCAP), Paris, 19–24 March 2017, pp. 3722–5.

  87. Scapaticci R, Lopresto V, Pinto R, et al. Monitoring thermal ablation via microwave tomography: an ex vivo experimental assessment. Diagnostics (Basel). 2018;8:81.

    Google Scholar 

  88. Scapaticci R, Bellizzi GG, Cavagnaro M, et al. Exploiting microwave imaging methods for real-time monitoring of thermal ablation. Int J Ant Propag. 2017;2017:5231065.

    Google Scholar 

Download references

Funding

Work in the author’s laboratory was supported by the “Step A” program of the Japan Science and Technology Agency (JST) and Kiban-B, Shingakujuturyouiki. In addition, this work was supported in part by grants-in-aid from the Japanese Ministry of Health, Labour and Welfare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Nakajima.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Ethical statements

This manuscript has not been published or presented elsewhere in part or in entirety and is not under consideration by another journal. We have read and understood your journal’s policies, and we believe that neither the manuscript nor the study violates any of these.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imajo, K., Ogawa, Y., Yoneda, M. et al. A review of conventional and newer generation microwave ablation systems for hepatocellular carcinoma. J Med Ultrasonics 47, 265–277 (2020). https://doi.org/10.1007/s10396-019-00997-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10396-019-00997-5

Keywords

Navigation