Skip to main content

Advertisement

Log in

Evaluation of Yersinia pestis Transmission Pathways for Sylvatic Plague in Prairie Dog Populations in the Western U.S.

EcoHealth Aims and scope Submit manuscript

Abstract

Sylvatic plague, caused by the bacterium Yersinia pestis, is periodically responsible for large die-offs in rodent populations that can spillover and cause human mortalities. In the western US, prairie dog populations experience nearly 100% mortality during plague outbreaks, suggesting that multiple transmission pathways combine to amplify plague dynamics. Several alternate pathways in addition to flea vectors have been proposed, such as transmission via direct contact with bodily fluids or inhalation of infectious droplets, consumption of carcasses, and environmental sources of plague bacteria, such as contaminated soil. However, evidence supporting the ability of these proposed alternate pathways to trigger large-scale epizootics remains elusive. Here we present a short review of potential plague transmission pathways and use an ordinary differential equation model to assess the contribution of each pathway to resulting plague dynamics in black-tailed prairie dogs (Cynomys ludovicianus) and their fleas (Oropsylla hirsuta). Using our model, we found little evidence to suggest that soil contamination was capable of producing plague epizootics in prairie dogs. However, in the absence of flea transmission, direct transmission, i.e., contact with bodily fluids or inhalation of infectious droplets, could produce enzootic dynamics, and transmission via contact with or consumption of carcasses could produce epizootics. This suggests that these pathways warrant further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Abbott RC, Rocke TE (2012) Plague: U.S. Geological Survey Circular 1372, 79 p., plus appendix. (Also available at http://pubs.usgs.gov/circ/1372.)

  • Antonation, K. S., T. K. Shury, T. K. Bollinger, A. Olson, P. Mabon, G. Van Domselaar, and C. R. Corbett. 2014. Sylvatic plague in a Canadian black-tailed prairie dog (Cynomys ludovicianus). Journal of Wildlife Diseases 50:699–702.

    Article  PubMed  Google Scholar 

  • Arbaji, A., S. Kharabsheh, S. Al-Azab, M. Al-Kayed, Z. S. Amr, M. Abu Baker, and M. C. Chu. 2005. A 12-case outbreak of pharyngeal plague following the consumption of camel meat, in north-eastern Jordan. Annals of Tropical Medicine and Parasitology 99:789–793.

    Article  CAS  PubMed  Google Scholar 

  • Augustine, D. J., M. R. Matchett, T. P. Toombs, J. F. Cully, T. L. Johnson, and J. G. Sidle. 2008. Spatiotemporal dynamics of black-tailed prairie dog colonies affected by plague. Landscape Ecology 23:255–267.

    Article  Google Scholar 

  • Ayyadurai S, Houhamdi L, Lepidi H, Nappez C, Raoult D, Drancourt M (2008) Long-term persistence of virulent Yersinia pestis in soil. Microbiology (Reading, England) 154:2865–2871

  • Bearden, S. W., and R. R. Brubaker. 2010. Recent findings regarding maintenance of enzootic variants of Yersinia pestis in sylvatic reservoirs and their significance in the evolution of epidemic plague. Vector-Borne and Zoonotic Diseases 10:85–92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ber, R., E. Mamroud, M. Aftalion, A. Tidhar, D. Gur, Y. Flashner, and S. Cohen. 2003. Development of an improved selective agar medium for isolation of Yersinia pestis. Applied and Environmental Microbiology 69:5787–5792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boegler, K. A., C. B. Graham, J. A. Montenieri, K. MacMillan, J. L. Holmes, J. M. Peterson, K. L. Gage, and R. J. Eisen. 2012. Evaluation of the infectiousness to mice of soil contaminated with Yersinia pestis-infected blood. Vector-Borne and Zoonotic Diseases 12:948–952.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boone, A., J. P. Kraft, and P. Stapp. 2009. Scavenging by mammalian carnivores on prairie dog colonies: implications for the spread of plague. Vector-Borne and Zoonotic Diseases 9:185–190.

    Article  PubMed  Google Scholar 

  • Brinkerhoff, J. R., C. Ray, B. Thiagarajan, S. K. Collinge, J. F. Cully, B. Holmes, and K. L. Gage. 2008. Prairie dog presence affects occurrence patterns of disease vectors on small mammals. Ecography 31:654–662.

    Article  Google Scholar 

  • Brinkerhoff, R. J., S. K. Collinge, Y. Bai, and C. Ray. 2009. Are carnivores universally good sentinels of plague? Vector-Borne and Zoonotic Diseases 9:491–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buhnerkempe, M. G., R. J. Eisen, B. Goodell, K. L. Gage, M. F. Antolin, and C. T. Webb. 2011. Transmission shifts underlie variability in population responses to Yersinia pestis infection. PloS one 6:e22498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burroughs, A. 1947. Sylvatic plague studies. The vector efficiency of nine species of fleas compared with Xenopsylla cheopis. Journal of Hygiene 45:371–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busch, J. D., R. Van Andel, N. E. Stone, K. R. Cobble, R. Nottingham, J. Lee, M. VerSteeg, J. Corcoran, J. Cordova, W. Van Pelt, M. M. Shuey, J. T. Foster, J. M. Schupp, S. Beckstrom-Sternberg, J. Beckstrom-Sternberg, P. Keim, S. Smith, J. Rodriguez-Ramos, J. L. Williamson, T. E. Rocke, and D. M. Wagner. 2013. The innate immune response may be important for surviving plague in wild Gunnison’s prairie dogs. Journal of Wildlife Diseases 49:920–31.

    Article  PubMed  Google Scholar 

  • Collinge, S. K., W. C. Johnson, C. Ray, R. Matchett, J. Grensten, J. F. Cully Jr., K. L. Gage, M. Y. Kosoy, J. E. Loye, and A. P. Martin. 2005. Landscape structure and plague occurrence in black-tailed prairie dogs on grasslands of the western USA. Landscape Ecology 20:941–955.

    Article  Google Scholar 

  • Craft, M. E., E. Volz, C. Packer, and L. A. Meyers. 2011. Disease transmission in territorial populations: the small-world network of Serengeti lions. Journal of the Royal Society, Interface 8:776–86.

    Article  PubMed  Google Scholar 

  • Cully, J. F., L. G. Carter, and K. L. Gage. 2000. New records of sylvatic plague in Kansas. Journal of Wildlife Diseases 36:389–392.

    Article  PubMed  Google Scholar 

  • Cully Jr, J. F., and E. S. Williams. 2001. Interspecific comparisons of sylvatic plague in prairie dogs. Journal of mammalogy 82:894–905.

    Article  Google Scholar 

  • Davis, S., M. Begon, L. De Bruyn, V. S. Ageyev, N. L. Klassovskiy, S. B. Pole, H. Viljugrein, N. C. Stenseth, and H. Leirs. 2004. Predictive thresholds for plague in Kazakhstan. Science 304:736–8.

    Article  CAS  PubMed  Google Scholar 

  • Davis, S., H. Leirs, H. Viljugrein, N. C. Stenseth, L. De Bruyn, N. Klassovskiy, V. Ageyev, and M. Begon. 2007. Empirical assessment of a threshold model for sylvatic plague. Journal of the Royal Society, Interface 4:649–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis, S., P. Trapman, H. Leirs, M. Begon, and J. A. P. Heesterbeek. 2008. The abundance threshold for plague as a critical percolation phenomenon. Nature 454:634–7.

    Article  CAS  PubMed  Google Scholar 

  • de Castro, F. and B. Bolker. 2005. Mechanisms of disease-induced extinction. Ecology Letters 8:117-126.

    Article  Google Scholar 

  • Easterday, W. R., K. L. Kausrud, B. Star, L. Heier, B. J. Haley, V. Ageyev, R. R. Colwell, and N. C. Stenseth. 2012. An additional step in the transmission of Yersinia pestis? The ISME Journal 6:231–6.

    Article  CAS  PubMed  Google Scholar 

  • Eisen, R. J., S. W. Bearden, A. P. Wilder, J. A. Montenieri, M. F. Antolin, and K. L. Gage. 2006. Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics. Proceedings of the National Academy of Sciences of the United States of America 103:15380–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisen, R. J., L. Eisen, and K. L. Gage. 2009. Studies of vector competency and efficiency of North American fleas for Yersinia pestis: state of the field and future research needs. Journal of Medical Entomology 46:737–744.

    Article  PubMed  Google Scholar 

  • Eisen, R. J., and K. L. Gage. 2009. Adaptive strategies of Yersinia pestis to persist during inter-epizootic and epizootic periods. Veterinary Research 40:1–14.

    Article  PubMed  Google Scholar 

  • Eisen RJ, Lowell JL, Montenieri JA, Bearden SW, Gage KL (2007) Temporal dynamics of early-phase transmission of Yersinia pestis by unblocked fleas: secondary infectious feeds prolong efficient transmission by Oropsylla montana (Siphonaptera: Ceratophyllidae). Journal of Medical Entomology 44:672–677.

  • Eisen, R. J., J. M. Petersen, C. L. Higgins, D. Wong, C. E. Levy, P. S. Mead, M. E. Schriefer, K. S. Griffith, K. L. Gage, and B. C. Beard. 2008a. Persistence of Yersinia pestis in soil under natural conditions. Emerging Infectious Diseases 14:12–14.

    Google Scholar 

  • Eisen, R. J., S. M. Vetter, J. L. Holmes, S. W. Bearden, J. A. Montenieri, and K. L. Gage. 2008b. Source of host blood affects prevalence of infection and bacterial loads of Yersinia pestis in fleas. Journal of Medical Entomology 45:933–938.

    Article  PubMed  Google Scholar 

  • Engelthaler, D. M., B. J. Hinnebusch, C. M. Rittner, and K. L. Gage. 2000. Quantitative competitive PCR as a technique for exploring flea-Yersinia pestis dynamics. The American Journal of Tropical Medical Hygiene 62:552–560.

    CAS  Google Scholar 

  • Eskey, C., V. Haas, and N. Good. 1940. Plague in the western part of the United States. Federal Security Agency, U.S. Public Health Service, Washington DC.

    Google Scholar 

  • Evans, F., and R. Holdenried. 1943. A population study of the beechey ground squirrel in central California. Journal of Mammalogy 24:231–260.

    Article  Google Scholar 

  • Friggens, M. M., R. R. Parmenter, M. Boyden, P. L. Ford, K. Gage, and P. Keim. 2010. Flea abundance, diversity, and plague in Gunnison’s prairie dogs (Cynomys gunnisoni) and their burrows in montane grasslands in northern New Mexico. Journal of Wildlife Diseases 46:356–67.

    Article  PubMed  Google Scholar 

  • Gage, K. L., and M. Y. Kosoy. 2005. Natural history of plague: perspectives from more than a century of research. Annual Review of Entomology 50:505–28.

    Article  CAS  PubMed  Google Scholar 

  • Gani, R., and S. Leach. 2004. Epidemiologic determinants for modeling pneumonic plague outbreaks. Emerging Infectious Diseases 10:608–614.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gascuel, F., M. Choisy, J.-M. Duplantier, F. Débarre, and C. Brouat. 2013. Host resistance, population structure and the long-term persistence of bubonic plague: contributions of a modelling approach in the Malagasy focus. PLoS Computational Biology 9:e1003039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George, D. B., C. T. Webb, K. M. Pepin, L. T. Savage, and M. F. Antolin. 2013. Persistence of black-tailed prairie-dog populations affected by plague in northern Colorado, USA. Ecology 94:1572–1583.

    Article  PubMed  Google Scholar 

  • Godbey BJL, Biggins DE, Garelle D (2006) Exposure of Captive Black-Footed Ferrets to Plague and Implications for Species Recovery. U.S. Geological Survey.

  • Hartwell, W. V, S. F. Quan, K. G. Scott, and L. Kartman. 1958. Observations on flea transfer between hosts; a mechanism in the spread of bubonic plague. Science 127:127–128.

    Article  Google Scholar 

  • Holdenried, R., and S. F. Quan. 1956. Susceptibility of New Mexico rodents to experimental plague. Public Health Reports 71:979–984.

    Article  CAS  PubMed  Google Scholar 

  • Holmes, B. E., K. R. Foresman, and M. R. Matchett. 2006. No evidence of persistent Yersinia pestis infection at prairie dog colonies in north-central Montana. Journal of Wildlife Diseases 42:164–169.

    Article  PubMed  Google Scholar 

  • Hoogland, J. L. 1995. The black-tailed prairie dog: Social life of a burrowing mammal. University of Chicago Press, Chicago, IL.

    Google Scholar 

  • Hoogland, J. L., S. Davis, S. Benson-Amram, D. Labruna, B. Goossens, and M. A. Hoogland. 2004. Pyraperm kills fleas and halts plague among Utah prairie dogs. The Southwestern Naturalist 49:376-83.

    Article  Google Scholar 

  • Johnson, T. L., J. F. Cully, S. K. Collinge, C. Ray, C. M. Frey, and B. K. Sandercock. 2011. Spread of plague among black-tailed prairie dogs is associated with colony spatial characteristics. The Journal of Wildlife Management 75:357–368.

    Article  Google Scholar 

  • Keeling, M. J. 1999. The effects of local spatial structure on epidemiological invasions. Proceedings of the Royal Society B 266:859–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraft, J. P., and P. Stapp. 2013. Movements and burrow use by northern grasshopper mice as a possible mechanism of plague spread in prairie dog colonies. Journal of Mammalogy 94:1087–1093.

    Article  Google Scholar 

  • Krasnov, B. R., I. S. Khokhlova, L. J. Fielden, and N. I. Burdelova. 2002. Time of survival under starvation in two flea species (Siphonaptera: Pullicidae) at different air temperatures and relative humidities. Journal of Vector Ecology 27:70–81.

    CAS  PubMed  Google Scholar 

  • Lorange, E. A., B. L. Race, F. Sebbane, and B. J. Hinnebusch. 2005. Poor vector competence of fleas and the evolution of hypervirulence in Yersinia pestis. Journal of Infectious Diseases 191:1907–1912.

    Article  PubMed  Google Scholar 

  • Matchett, M. R., D. E. Biggins, V. Carlson, B. Powell, and T. Rocke. 2010. Enzootic plague reduces black-footed ferret (Mustela nigripes) survival in Montana. Vector-Borne and Zoonotic Diseases 10:27–35.

    Article  PubMed  Google Scholar 

  • Parmenter, R. R., E. P. Yadav, C. A. Parmenter, P. Ettestad, and K. L. Gage. 1999. Incidence of plague associated with increased winter-spring precipitation in New Mexico. American Journal of Tropical Medicine and Hygiene 61:814–821.

    CAS  PubMed  Google Scholar 

  • Pauli, J. N., S. W. Buskirk, E. S. Williams, and W. H. Edwards. 2006. A plague epizootic in the black-tailed prairie dog (Cynomys ludovicianus). Journal of Wildlife Diseases 42:74–80.

    Article  PubMed  Google Scholar 

  • Quan, T. J., A. M. Barnes, L. G. Carter, and K. R. Tsuchiya. 1985. Experimental plague in rock squirrels, Spermophilus variegatus (Erxleben). Journal of Wildlife Diseases 21:205–210.

    Article  CAS  PubMed  Google Scholar 

  • Reijniers, J., S. Davis, M. Begon, J. A. P. Heesterbeek, V. S. Ageyev, and H. Leirs. 2012. A curve of thresholds governs plague epizootics in Central Asia. Ecology Letters 15:554–60.

    Article  Google Scholar 

  • Rocke TE, Tripp D, Lorenzsonn F, Falendysz E, Smith S, Williamson J, Abbott R (2015) Age at vaccination may influence response to sylvatic plague vaccine (SPV) in Gunnison’s prairie dogs (Cynomys gunnisoni). EcoHealth [ePub ahead of print].

  • Rocke, T. E., J. Williamson, K. R. Cobble, J. D. Busch, M. F. Antolin, and D. M. Wagner. 2012. Resistance to plague among black-tailed prairie dog populations. Vector-Borne and Zoonotic Diseases 12:111–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rust, M. K., and M. W. Dryden. 1997. The biology, ecology, and management of the cat flea. Annual Review of Entomology 42:451–73.

    Article  CAS  PubMed  Google Scholar 

  • Salkeld, D. J., M. Salathé, P. Stapp, and J. H. Jones. 2010. Plague outbreaks in prairie dog populations explained by percolation thresholds of alternate host abundance. Proceedings of the National Academy of Sciences the United States of America 107:14247–50.

    Article  CAS  Google Scholar 

  • Salkeld, D. J., and P. Stapp. 2008. No evidence of deer mouse involvement in plague (Yersinia pestis) epizootics in prairie dogs. Vector-Borne and Zoonotic Diseases 8:331–337.

    Article  PubMed  Google Scholar 

  • Salkeld, D., and P. Stapp. 2006. Seroprevalence rates and transmission of plague (Yersinia pestis) in mammalian carnivores. Vector-Borne & Zoonotic Diseases 6:231–239.

    Article  CAS  Google Scholar 

  • Samia, N. I., K. L. Kausrud, H. Heesterbeek, V. Ageyev, M. Begon, K.-S. Chan, and N. C. Stenseth. 2011. Dynamics of the plague-wildlife-human system in Central Asia are controlled by two epidemiological thresholds. Proceedings of the National Academy of Sciences of the United States of America 108:14527–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savage, L. T., R. M. Reich, L. M. Hartley, P. Stapp, and M. F. Antolin. 2011. Climate, soils, and connectivity predict plague epizootics in black-tailed prairie dogs (Cynomys ludovicianus). Ecological Applications 21:2933–2943.

    Article  Google Scholar 

  • Serzhan OS, Ageyev VS (2000) Geographical distribution and host complexes of plague-infected fleas in relation to some problems of paleogenesis of plague enzootics. In: Karantinye i Zoonoznye Infektsii v Kazakhstane, Atshabar BB, 2:183–92. Almaty: Kazakhskii Protivochumnyi Inst. Shoemaker KT, Lacy RC, Verant ML, Brook BW, Livieri TM, Miller PS, Fordham DA, Resit Akçakaya H (2014) Effects of prey metapopulation structure on the viability of black-footed ferrets in plague-impacted landscapes: a metamodelling approach. Journal of Applied Ecology 51:735–745.

  • Skurnik, M., A. Peippo, and E. Ervela. 2000. Characterization of the O-antigen gene clusters of Yersinia pseudotuberculosis and the cryptic O-antigen gene cluster of Yersinia pestis shows that the plague bacillus is most closely related to and has evolved from Y. pseudotuberculosis serotype O:1b. Molecular Microbiology 37:316–330.

    Article  CAS  PubMed  Google Scholar 

  • Stapp, P., M. F. Antolin, and M. Ball. 2004. Patterns of extinction in prairie dog metapopulations: plague outbreaks follow El Niño events. Frontiers in Ecology and the Environment 2:235–240.

    Google Scholar 

  • Stapp, P., and R. J. Salkeld. 2009. Inferring host-parasite relationships using stable isotopes: implications for disease transmission and host specificity. Ecology 90:3268-73.

    Article  PubMed  Google Scholar 

  • Stapp, P., D. J. Salkeld, R. J. Eisen, R. Pappert, J. Young, L. G. Carter, K. L. Gage, D. W. Tripp, and M. F. Antolin. 2008. Exposure of small rodents to plague during epizootics in black-tailed prairie dogs. Journal of Wildlife Diseases 44:724–730.

    Article  PubMed  Google Scholar 

  • Stapp, P., D. J. Salkeld, H. A. Franklin, J. P. Kraft, D. W. Tripp, M. F. Antolin, and K. L. Gage. 2009. Evidence for the involvement of an alternate rodent host in the dynamics of introduced plague in prairie dogs. The Journal of Animal Ecology 78:807–17.

    Article  PubMed  Google Scholar 

  • Stenseth, N. C., B. B. Atshabar, M. Begon, S. R. Belmain, E. Bertherat, E. Carniel, K. L. Gage, H. Leirs, and L. Rahalison. 2008. Plague: past, present, and future. PLoS Medicine 5:e3.

    Article  PubMed  PubMed Central  Google Scholar 

  • St. Romain K, Tripp DW, Salkeld DJ, Antolin MF (2013) Duration of plague (Yersinia pestis) outbreaks in black-tailed prairie dog (Cynomys ludovicianus) colonies of northern Colorado. EcoHealth 10:241–245.

  • Thiagarajan, B., Y. Bai, K. L. Gage, and J. F. Cully. 2008. Prevalence of Yersinia pestis in rodents and fleas associated with black-tailed prairie dogs (Cynomys ludovicianus) at Thunder Basin National Grassland, Wyoming. Journal of Wildlife Diseases 44:731–736.

    Article  PubMed  Google Scholar 

  • Thomas, R. E., A. M. Barnes, T. J. Quan, M. L. Beard, L. G. Carter, and C. E. Hopla. 1988. Susceptibility to Yersinia pestis in the northern grasshopper mouse (Onychomys leucogaster). Journal of Wildlife Diseases 24:327–333.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, R. E., M. L. Beard, T. J. Quan, L. G. Carter, A. M. Barnes, and C. E. Hopla. 1989. Experimentally induced plague infection in the northern grasshopper mouse (Onychomys leucogaster) acquired by consumption of infected prey. Journal of Wildlife Diseases 25:477–480.

    Article  CAS  PubMed  Google Scholar 

  • Tripp, D. W., K. L. Gage, J. A. Montenieri, and M. F. Antolin. 2009. Flea abundance on black-tailed prairie dogs (Cynomys ludovicianus) increases during plague epizootics. Vector-Borne and Zoonotic Diseases 9:313–321.

    Article  PubMed  Google Scholar 

  • Vogler, A. J., F. Chan, D. M. Wagner, P. Roumagnac, J. Lee, R. Nera, M. Eppinger, J. Ravel, L. Rahalison, B. W. Rasoamanana, S. M. Beckstrom-Sternberg, M. Achtman, S. Chanteau, and P. Keim. 2011. Phylogeography and molecular epidemiology of Yersinia pestis in Madagascar. PLoS Neglected Tropical Diseases 5:e1319.

    Article  PubMed  Google Scholar 

  • Webb, C. T., C. P. Brooks, K. L. Gage, and M. F. Antolin. 2006. Classic flea-borne transmission does not drive plague epizootics in prairie dogs. Proceedings of the National Academy of Sciences of the United States of America 103:6236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilder, A. P., R. J. Eisen, S. W. Bearden, J. A. Montenieri, K. L. Gage, and M. F. Antolin. 2008. Oropsylla hirsuta (Siphonaptera: Ceratophyllidae) can support plague epizootics in black-tailed prairie dogs (Cynomys ludovicianus) by early-phase transmission of Yersinia pestis. Vector-Borne and Zoonotic Diseases 8:359–367.

    Article  PubMed  Google Scholar 

  • Williams, J. E., M. A. Moussa, and D. C. Cavanaugh. 1979. Experimental plague in the California ground squirrel. Journal of Infectious Diseases 140:618-21.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., X. Dai, X. Wang, A. Maituohuti, Y. Cui, A. Rehemu, Q. Wang, W. Meng, T. Luo, R. Guo, B. Li, A. Abudurexiti, Y. Song, R. Yang, and H. Cao. 2012. Dynamics of Yersinia pestis and its antibody response in great gerbils (Rhombomys opimus) by subcutaneous infection. PloS one 7:e46820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This manuscript was greatly improved by comments from R. Abbott, E. Falendysz, M. Buhnerkempe, and two anonymous reviewers. RR and TR are supported by the U.S. Geological Survey’s National Wildlife Health Center. KR performed this work with the USGS while employed as a post-doctoral researcher at the University of Wisconsin. GB performed this work with the USGS while serving as a graduate student at the University of Wisconsin and is supported by a fellowship from the Morris Animal Foundation (D14ZO-412). The use of trade or product names does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonie E. Rocke.

Ethics declarations

Conflict of Interest

The authors have no conflict of interests to disclose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 184 kb)

Supplementary material 1 (PDF 419 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richgels, K.L.D., Russell, R.E., Bron, G.M. et al. Evaluation of Yersinia pestis Transmission Pathways for Sylvatic Plague in Prairie Dog Populations in the Western U.S.. EcoHealth 13, 415–427 (2016). https://doi.org/10.1007/s10393-016-1133-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10393-016-1133-9

Keywords

Navigation