Skip to main content
Log in

Inhibition of anterior capsule opacification and contraction by the elevated anterior rim of the intraocular lens optic

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To verify the anterior capsule opacification (ACO) and contraction (ACC) of the ZCB00V intraocular lens (IOL), made of the same material as the AR40e with a high ACC rate.

Study design

Retrospective cohort study.

Methods

We evaluated 35 patients at 1 week, 1, 3 and 6 months post phacoemulsification with either a ZCB00V (n = 35) or FY-60AD (n = 34) IOL implantation. The ACC rate was calculated using retroillumination images of the anterior segment, and the ACO was measured using anterior segment photographs and image analysis software. The contact grade between the IOL and anterior capsule was estimated from the Pentacam® images.

Results

The postoperative ACC rates (mean ± standard deviation) at 3 months were 1.03%±2.54% for the ZCB00V and, and 7.12%±9.47% for the FY-60AD. The ZCB00V-implanted eyes showed a significantly lower postoperative ACC at 1 week, 3 months, and 6 months (P < 0.01). On the other hand, the FY-60AD-implanted eyes had more pronounced ACO, and a significantly larger area of opacification (62.24%±21.32% vs. 16.90%±8.34%; P = 0.0005). Pentacam® analysis revealed a space between the anterior capsule and IOL surface in the ZCB00V-implanted eyes, whereas the anterior capsule firmly adhered to the IOL surface in the FY-60AD-implanted eyes.

Conclusion

The ACC and ACO were significantly lower in eyes with ZCB00V IOLs compared to those with the FY-60AD. The anterior segment image analysis revealed that the elevated anterior rim of the ZCB00V IOL prevented adhesion between the anterior capsule and IOL optic surface, suggesting an open capsule effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Davison JA. Capsule contraction syndrome. J Cataract Refract Surg. 1993;19:582–9.

    Article  CAS  PubMed  Google Scholar 

  2. Hansen SO, Crandall AS, Olson RJ. Progressive constriction of the anterior capsular opening following intact capsulorhexis. J Cataract Refract Surg. 1993;19:77–82.

    Article  CAS  PubMed  Google Scholar 

  3. Frezzotti R, Caporossi A, Mastrangelo D, Hadjistilianou T, Tosi P, Cintorino M, et al. Pathogenesis of posterior capsular opacification. Part II: histopathological and in vitro culture findings. J Cataract Refract Surg. 1990;16:353–60.

    Article  CAS  PubMed  Google Scholar 

  4. Hayashi H, Hayashi K, Nakao F, Hayashi F. Area reduction in the anterior capsule opening in eyes of diabetes mellitus patients. J Cataract Refract Surg. 1998;24:1105–10.

    Article  CAS  PubMed  Google Scholar 

  5. Hayashi K, Hayashi H, Matsuo K, Nakao F, Hayashi F. Anterior capsule contraction and intraocular lens dislocation after implant surgery in eyes with retinitis pigmentosa. Ophthalmology. 1998;105:1239–43.

    Article  CAS  PubMed  Google Scholar 

  6. Gonvers M, Sickenberg M, van Melle G. Change in capsulorhexis size after implantation of three types of intraocular lenses. J Cataract Refract Surg. 1997;23:231–8.

    Article  CAS  PubMed  Google Scholar 

  7. Sickenberg M, Gonvers M, van Melle G. Change in capsulorhexis size with four foldable loop-haptic lenses over 6 months. J Cataract Refract Surg. 1998;24:925–30.

    Article  CAS  PubMed  Google Scholar 

  8. Cochener B, Jacq PL, Colin J. Capsule contraction after continuous curvilinear capsulorhexis: poly(methyl methacrylate) versus silicone intraocular lenses. J Cataract Refract Surg. 1999;25:1362–9.

    Article  CAS  PubMed  Google Scholar 

  9. Hayashi K, Hayashi H. Intraocular lens factors that may affect anterior capsule contraction. Ophthalmology. 2005;112:286–92.

    Article  PubMed  Google Scholar 

  10. Nagata M, Matsushima H, Mukai K, Terauchi W, Gotoh N, Matsui E. Comparison of anterior capsule contraction between 5 foldable intraocular lens models. J Cataract Refract Surg. 2008;34:1495–8.

    Article  PubMed  Google Scholar 

  11. Kahraman G, Amon M, Ferdinaro C, Nigl K, Walch M. Intraindividual comparative analysis of capsule opacification after implantation of 2 single-piece hydrophobic acrylic intraocular lenses models: three-year follow-up. J Cataract Refract Surg. 2015;41:990–6.

    Article  PubMed  Google Scholar 

  12. Johansson B. Glistenings, anterior/posterior capsular opacification and incidence of nd:YAG laser treatments with two aspheric hydrophobic acrylic intraocular lenses – a long-term intra-individual study. Acta Ophthalmol. 2017;95:671–7.

    Article  CAS  PubMed  Google Scholar 

  13. Emery JM, Little JH. Surgical techniques, complications, and results. Phacoemulsification and aspiration of cataract. St. Louis: Mosby; 1979. 45–8.

    Google Scholar 

  14. Kawamata S, Yoshimitsu S, Tokunaga S, Kubo S, Tanaka T. Sediment tolerance of Sargassum algae inhabiting sediment-covered rocky reefs. Mar Biol. 2012;159:723–33.

    Article  Google Scholar 

  15. Kawamata S, Taino S. Trophic cascade in a marine protected area with artificial reefs: spiny lobster predation mitigates urchin barrens. Ecol Appl. 2021;31:e02364.

    Article  PubMed  Google Scholar 

  16. Hara T, Hara T, Hara T. Preventing posterior capsular opacification with an endocapsular equator ring in a young human eye: 2-year follow-up. Arch Ophthalmol. 2007;125:483–6.

    Article  PubMed  Google Scholar 

  17. Nishi O, Nishi K, Menapace R, Akura J. Capsular bending ring to prevent posterior capsule opacification: 2 year follow-up. J Cataract Refract Surg. 2001;27:1359–65.

    Article  CAS  PubMed  Google Scholar 

  18. Nishi O, Nishi K, Menapace R. Capsule-bending ring for the prevention of capsular opacification: a preliminary report. Ophthalmic Surg Lasers. 1998;29:749–53.

    Article  CAS  PubMed  Google Scholar 

  19. Nagamoto T, Tanaka N, Fujiwara T. Inhibition of posterior capsule opacification by a capsular adhesion-preventing ring. Arch Ophthalmol. 2009;127:471–4.

    Article  PubMed  Google Scholar 

  20. Eldred JA, McDonald M, Wilkes HS, Spalton DJ, Wormstone IM. Growth factor restriction impedes progression of wound healing following cataract surgery: identification of VEGF as a putative therapeutic target. Sci Rep. 2016;6:24453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kavoussi SC, Werner L, Fuller SR, Hill M, Burrow MK, McIntyre JS, et al. Prevention of capsular bag opacification with a new hydrophilic acrylic disk-shaped intraocular lens. J Cataract Refract Surg. 2011;37:2194–200.

    Article  PubMed  Google Scholar 

  22. Leishman L, Werner L, Bodnar Z, Ollerton A, Michelson J, Schmutz M, et al. Prevention of capsular bag opacification with a modified hydrophilic acrylic disk-shaped intraocular lens. J Cataract Refract Surg. 2012;38:1664–70.

    Article  PubMed  Google Scholar 

  23. Eldred JA, Spalton DJ, Wormstone IM. An in vitro evaluation of the Anew Zephyr open-bag IOL in the prevention of posterior capsule opacification using a human capsular bag model. Invest Ophthalmol Vis Sci. 2014;55:7057–64.

    Article  PubMed  Google Scholar 

  24. Aliancy J, Werner L, Ludlow J, Nguyen J, Masino B, Ha L, et al. Long-term capsule clarity with a disk-shaped intraocular lens. J Cataract Refract Surg. 2018;44:504–9.

    Article  PubMed  Google Scholar 

  25. Aose M, Matsushima H, Mukai K, Katsuki Y, Gotoh N, Senoo T. Influence of intraocular lens implantation on anterior capsule contraction and posterior capsule opacification. J Cataract Refract Surg. 2014;40:2128–33.

    Article  PubMed  Google Scholar 

  26. Katsuki Y, Matsushima H, Mukai K, Watabiki S, Aose M, Terauchi W, et al. Open-capsule intraocular lens to prevent posterior capsule opacification. J Cataract Refract Surg. 2019;45:1007–12.

    Article  PubMed  Google Scholar 

  27. Nishi O, Nishi K, Imanishi M. Synthesis of interleukin-1 and prostaglandin E2 by lens epithelial cells of human cataracts. Br J Ophthalmol. 1992;76:338–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ishibashi T, Araki H, Sugai S, Tawara A, Ohnishi Y, Inomata H. Anterior capsule opacification in monkey eyes with posterior chamber intraocular lenses. Arch Ophthalmol. 1993;111:1685–90.

    Article  CAS  PubMed  Google Scholar 

  29. Nishi O, Nishi K, Wada K, Ohmoto Y. Expression of transforming growth factor (TGF)-α, TGF-β2 and interleukin 8 messenger RNA in postsurgical and cultured lens epithelial cells obtained from patients with senile cataracts. Graefes Arch Clin Exp Ophthalmol. 1999;237:806–11.

    Article  CAS  PubMed  Google Scholar 

  30. Nishi O. Other factors in PCO prevention. J Cataract Refract Surg. 2012;38:924–5. author reply 925.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayumi Nagata.

Ethics declarations

Conflicts of interest

M. Nagata, None; H. Matsushima, None; K. Mukai, None; T. Senoo, None; O. Nishi, None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Author: Mayumi Nagata

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagata, M., Matsushima, H., Mukai, K. et al. Inhibition of anterior capsule opacification and contraction by the elevated anterior rim of the intraocular lens optic. Jpn J Ophthalmol 67, 693–698 (2023). https://doi.org/10.1007/s10384-023-01013-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-023-01013-7

Keywords

Navigation