Skip to main content
Log in

The expression of matrix metalloproteinases and their inhibitors in corneal fibroblasts by alarmins from necrotic corneal epithelial cells

  • Laboratory Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Sterile ulceration is frequently observed in the cornea following persistent corneal epithelial damage. We examined the effect of alarmins released by necrotic corneal epithelial cells (HCE) on the production of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) by corneal fibroblasts.

Methods

IL-1α and high-mobility group box 1 protein (HMGB1) released into the supernatant derived from necrotic HCE cells were measured with enzyme-linked immunosorbent assay (ELISA). MMPs and TIMPs produced by corneal fibroblasts, stimulated with the supernatant from necrotic HCE cells, were analyzed and measured with protein array and ELISA. To investigate dynamic expression of alarmins in the corneal epithelium, we used immunohistochemistry to observe the expression of human IL-1α in the corneal epithelium of human IL-1α Tg mice with or without cryopexy. We also investigated the expression of MMPs in corneal stroma of the mice treated with cryopexy, using RT-PCR.

Results

We detected IL-1α and HMGB-1 in the supernatant of necrotic HCE cells. These supernatants increased the expression of MMP-3 and MMP-1, and decreased that of TIMP-1 and TIMP-2 in human corneal fibroblasts. Almost always these were inhibited by IL-1 receptor antagonist. Recombinant IL-1α increased the production MMP-3 and MMP-1 in corneal fibroblasts. After cryopexy of the epithelium of human IL-1α Tg mice, the expression of human IL-1α was recognized in the cytoplasm but not nucleus of epithelial cells. The level of MMP-3 and MMP-1 mRNAs was elevated in the corneal stroma in mice treated with cryopexy.

Conclusion

Alarmins, especially IL-1α, released from necrotic HCE cells may play an important role in the expression of MMPs and TIMPs by corneal fibroblast, resulting in sterile ulceration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Matzinger P. The danger model: a renewed sense of self. Science. 2002;296:301–5.

    Article  CAS  PubMed  Google Scholar 

  2. Oppenheim JJ, Yang D. Alarmins: chemotactic activators of immune responses. Curr Opin Immunol. 2005;17:359–65.

    Article  CAS  PubMed  Google Scholar 

  3. Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81:1–5.

    Article  CAS  PubMed  Google Scholar 

  4. Ebihara N, Matsuda A, Nakamura S, Matsuda H, Murakami A. Role of the IL-6 classic- and trans-signaling pathways in corneal sterile inflammation and wound healing. Investig Ophthalmol Vis Sci. 2011;52:8549–57.

    Article  CAS  Google Scholar 

  5. Fukuda K, Ishida W, Tanaka H, Harada Y, Matsuda A, Ebihara N, et al. Alarmins from corneal epithelial cells upregulate CCL11 and VCAM-1 in corneal fibroblasts. Invest Ophthalmol Vis Sci. 2013;54:5817–23.

    Article  CAS  PubMed  Google Scholar 

  6. Overall CM, López-Otín C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer. 2002;2:657–72 (review).

    Article  CAS  PubMed  Google Scholar 

  7. Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 2006;25:9–34.

    Article  CAS  PubMed  Google Scholar 

  8. Martin MD, Matrisian LM. The other side of MMPs: protective roles in tumor progression. Cancer Metastasis Rev. 2007;26:717–24.

    Article  CAS  PubMed  Google Scholar 

  9. Graham HK, Horn M, Trafford AW. Extracellular matrix profiles in the progression to heart failure. European Young Physiologists Symposium Keynote Lecture-Bratislava 2007. Acta Physiol (Oxf). 2008;194:3–21.

    Article  CAS  Google Scholar 

  10. Cauwe B, Van den Steen PE, Opdenakker G. The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit Rev Biochem Mol Biol. 2007;42:113–85.

    Article  CAS  PubMed  Google Scholar 

  11. Gueders MM, Foidart JM, Noel A, Cataldo DD. Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in the respiratory tract: potential implications in asthma and other lung diseases. Eur J Pharmacol. 2006;533:133–44.

    Article  CAS  PubMed  Google Scholar 

  12. Sapolsky AI, Keiser H, Howell DS, Woessner JF Jr. Metalloproteases of human articular cartilage that digest cartilage proteoglycan at neutral and acid pH. J Clin Invest. 1976;58:1030–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dean DD, Martel-Pelletier J, Pelletier JP, Howell DS, Woessner JF Jr. Evidence for metalloproteinase and metalloproteinase inhibitor imbalance in human osteoarthritic cartilage. J Clin Invest. 1989;84:678–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Arend WP, Deter JM. Cytokines and cytokine inhibitors or antagonists in rheumatoid arthritis. Arthritis Rheumatol. 1990;33:305–15.

    Article  CAS  Google Scholar 

  15. Martel PJ, Zafarullah M, Kodama S, Pelletier JP. In vitro effects of interleukin 1 on the synthesis of metalloproteases, TIMP, plasminogen activators and inhibitors in human articular cartilage. J Rheumatol Suppl. 1991;27:80–4.

    Google Scholar 

  16. Riley GP, Harrall RL, Watson PG, Cawston TE, Hazleman BL. Collagenase (MMP-1) and TIMP-1 in destructive corneal disease associated with rheumatoid arthritis. Eye. 1995;9:703–18.

    Article  PubMed  Google Scholar 

  17. Okada Y, Nagase H, Harris ED Jr. Matrix metalloproteinases 1, 2, and 3 from rheumatoid synovial cells are sufficient to destroy joints. J Rheumatol. 1987;14:41–2.

    CAS  PubMed  Google Scholar 

  18. Okada Y, Harris ED Jr, Nagase H. The precursor of a metalloendopeptidase from human rheumatoid synovial fibroblasts. Purification and mechanisms of activation by endopeptidases and 4-aminophenylmercuric acetate. Biochem J. 1988;254:731–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brejchova K, Liskova P, Hrdlickova E, Filipec M, Jirsova K. Matrix metalloproteinases in recurrent corneal melting associated with primary Sjörgen’s syndrome. Mol Vis. 2009;15:2364–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gabison EE, Chastang P, Menashi S, Mourah S, Doan S, Oster M, et al. Late corneal perforation after photorefractive keratectomy associated with topical diclofenac: involvement of matrix metalloproteinases. Ophthalmology. 2003;110:1626–31.

    Article  PubMed  Google Scholar 

  21. O’Brien TP, Li QJ, Sauerburger F, Reviglio VE, Rana T, Ashraf MF. The role of matrix metalloproteinases in ulcerative keratolysis associated with perioperative diclofenac use. Ophthalmology. 2001;108:656–9.

    Article  PubMed  Google Scholar 

  22. Okada Y, Watanabe S, Nakanishi I, Kishi J, Hayakawa T, Watorek W, et al. Inactivation of tissue inhibitor of metalloproteinases by neutrophil elastase and other serine proteinases. FEBS Lett. 1988;229:157–60.

    Article  CAS  PubMed  Google Scholar 

  23. Hornebeck W, Lambert E, Petitfrere E. Bernard P. Beneficial and detrimental influences of tissue inhibitor of metalloproteinase-1 (TIMP-1) in tumor progression. Biochimie. 2005;87:377–83.

    Article  CAS  PubMed  Google Scholar 

  24. Fini ME, Girard MT, Matsubara M, Bartlett JD. Unique regulation of the matrix metalloproteinase, gelatinase B. Invest Ophthalmol Vis Sci. 1995;36:622–33.

    CAS  PubMed  Google Scholar 

  25. Sivak JM, Fini ME. MMPs in the eye: emerging roles for matrix metalloproteinases in ocular physiology. Prog Retin Eye Res. 2002;21:1–14.

    Article  CAS  PubMed  Google Scholar 

  26. Hao JL, Nagano T, Nakamura M, Kumagai N, Mishima H, Nishida T. Galardin inhibits collagen degradation by rabbit keratocytes by inhibiting the activation of pro-matrix metalloproteinases. Exp Eye Res. 1999;68:565–72.

    Article  CAS  PubMed  Google Scholar 

  27. Kimura K, Orita T, Kondo Y, Zhou H, Nishida T. Upregulation of matrix metalloproteinase expression by poly(I:C) in corneal fibroblasts: role of NF-κB and interleukin-1ß. Invest Ophthalmol Vis Sci. 2010;51:5012–8.

    Article  PubMed  Google Scholar 

  28. Niki Y, Yamada H, Sek S, Kikuchi T, Takaishi H, Toyama Y, et al. Macrophage- and neutrophil-dominant arthritis in human IL-1 alpha transgenic mice. J Clin Invest. 2001;107:1127–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Niki Y, Yamada H, Kikuchi T, Toyama Y, Matsumoto H, Fujikawa K, et al. Membrane-associated IL-1 contributes to chronic synovitis and cartilage destruction in human IL-1 alpha transgenic mice. J Immunol. 2004;172:577–84.

    Article  CAS  PubMed  Google Scholar 

  30. Niki Y, Takaishi H, Takito J, Miyamoto T, Kosaki N, Matsumoto H, et al. Administration of cyclooxygenase-2 inhibitor reduces joint inflammation but exacerbates osteopenia in IL-1 alpha transgenic mice due to GM-CSF overproduction. J Immunol. 2007;179:639–46.

    Article  CAS  PubMed  Google Scholar 

  31. Wessendorf JH, Garfinkel S, Zhan X, Brown S, Maciag T. Identification of a nuclear localization sequence within the structure of the human interleukin-1 alpha precursor. J Biol Chem. 1993;268:22100–4.

    CAS  PubMed  Google Scholar 

  32. Eigenbrod T, Park JH, Harder J, Iwakura Y, Núñez G. Cutting edge: critical role for mesothelial cells in necrosis-induced inflammation through the recognition of IL-1 alpha released from dying cells. J Immunol. 2008;181:8194–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wilson SE, He YG, Weng J, Li Q, McDowall AW, Vital M, et al. Epithelial injury induces keratocyte apoptosis: hypothesized role for the interleukin-1 system in the modulation of corneal tissue organization and wound healing. Exp Eye Res. 1996;62:325–7.

    Article  CAS  PubMed  Google Scholar 

  34. Wilson SE, Liu JJ, Mohan RR. Stromal–epithelial interactions in the cornea. Prog Retin Eye Res. 1999;18:293–309.

    Article  CAS  PubMed  Google Scholar 

  35. Wilson SE, Esposito A. Focus on molecules: interleukin-1: a master regulator of the corneal response to injury. Exp Eye Res. 2009;89:124–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hong JW, Liu JJ, Lee JS, Mohan RR, Mohan RR, Woods DJ, et al. Proinflammatory chemokine induction in keratocytes and inflammatory cell infiltration into the cornea. Invest Ophthalmol Vis Sci. 2001;42:2795–803.

    CAS  PubMed  Google Scholar 

  37. Stapleton WM, Chaurasia SS, Medeiros FW, Mohan RR, Sinha S, Wilson SE. Topical interleukin-1 receptor antagonist inhibits inflammatory cell infiltration into the cornea. Exp Eye Res. 2008;86:753–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sotozono C, He J, Matsumoto Y, Kita M, Imanishi J, Kinoshita S. Cytokine expression in the alkali-burned cornea. Curr Eye Res. 1997;16:670–6.

    Article  CAS  PubMed  Google Scholar 

  39. Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A, et al. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem. 2004;279:7370–7.

    Article  CAS  PubMed  Google Scholar 

  40. Ebihara N, Yamagami S, Chen L, Tokura T, Iwatsu M, Ushio H, et al. Expression and function of toll-like receptor-3 and -9 in human corneal myofibroblasts. Invest Ophthalmol Vis Sci. 2007;48:3069–76.

    Article  PubMed  Google Scholar 

  41. Chen CJ, Kono H, Golenbock D, Reed G, Akira S, Rock KL. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med. 2007;13:851–6.

    Article  CAS  PubMed  Google Scholar 

  42. Okamoto M, Takagi M, Kutsuna M, Hara Y, Nishihara M, Zhang MC. High expression of interleukin-1beta in the corneal epithelium of MRL/lpr mice is under the control of their genetic background. Clin Exp Immunol. 2004;136:239–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Ebihara.

Ethics declarations

Conflicts of interest

A. Iwatake, None; A. Murakami, None; N. Ebihara, None.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwatake, A., Murakami, A. & Ebihara, N. The expression of matrix metalloproteinases and their inhibitors in corneal fibroblasts by alarmins from necrotic corneal epithelial cells. Jpn J Ophthalmol 62, 92–100 (2018). https://doi.org/10.1007/s10384-017-0541-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-017-0541-x

Keywords

Navigation