Skip to main content

Advertisement

Log in

Comparison of ability of time-domain and spectral-domain optical coherence tomography to detect diffuse retinal nerve fiber layer atrophy

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Our aim was to evaluate and compare diagnostic capabilities of time-domain (Stratus) and spectral-domain (Cirrus) optical coherence tomography (OCT) to detect diffuse retinal nerve fiber layer (RNFL) atrophy.

Methods

This study assessed 101 eyes from 101 glaucoma patients with diffuse RNFL atrophy and 101 eyes from 101 age-matched healthy individuals. Two experienced glaucoma specialists graded red-free RNFL photographs of eyes with diffuse RNFL atrophy using a four-level grading system. The area under the receiver operating characteristic curves (AUC) of normal eyes was compared with that of eyes with diffuse atrophy. Sensitivity and specificity of each OCT device were calculated on the basis of its internal normative database.

Results

The largest AUC for Stratus and Cirrus were obtained for average RNFL thicknesses (0.96 and 0.94, respectively). Comparison of the AUC with different RNFL atrophy grades revealed no significant difference between the two OCT devices. Using an internal normative database at a <5 % level, the overall sensitivity of Stratus ranged from 58.0 to 84.0 %, whereas that of Cirrus ranged from 75.0 to 87.0 %. According to the normative database, the highest Stratus sensitivity was obtained with the temporal–superior–nasal–inferior–temporal (TSNIT) thickness graph, and the highest Cirrus sensitivity with the TSNIT thickness graph and the deviation map.

Conclusions

The AUC obtained from Cirrus were comparable with those from Stratus. On the basis of their normative databases, these devices had similar diagnostic accuracy. Our results suggest that the diagnostic capabilities of the two instruments to detect diffuse RNFL atrophy are similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Quigley HA, Addicks EM. Quantitative studies of retinal nerve fiber layer defects. Arch Ophthalmol. 1982;100:807–14.

    Article  PubMed  CAS  Google Scholar 

  2. Quigley HA. Examination of the retinal nerve fiber layer in the recognition of early glaucoma damage. Trans Am Ophthalmol Soc. 1986;84:920–66.

    PubMed  CAS  Google Scholar 

  3. Airaksinen PJ, Drance SM. Neuroretinal rim area and retinal nerve fiber layer in glaucoma. Arch Ophthalmol. 1985;103:203–4.

    Article  PubMed  CAS  Google Scholar 

  4. Huang ML, Chen HY. Development and comparison of automated classifiers for glaucoma diagnosis using Stratus optical coherence tomography. Invest Ophthalmol Vis Sci. 2005;46:4121–9.

    Article  PubMed  Google Scholar 

  5. Lalezary M, Medeiros FA, Weinreb RN, Bowd C, Sample PA, Tavares IM, et al. Baseline optical coherence tomography predicts the development of glaucomatous change in glaucoma suspects. Am J Ophthalmol. 2006;142:576–82.

    Article  PubMed  Google Scholar 

  6. Manassakorn A, Nouri-Mahdavi K, Caprioli J. Comparison of retinal nerve fiber layer thickness and optic disk algorithms with optical coherence tomography to detect glaucoma. Am J Ophthalmol. 2006;141:105–15.

    Article  PubMed  Google Scholar 

  7. Nouri-Mahdavi K, Nikkhou K, Hoffman DC, Law SK, Caprioli J, et al. Detection of early glaucoma with optical coherence tomography (Stratus OCT). J Glaucoma. 2008;17:183–8.

    Article  PubMed  Google Scholar 

  8. Parikh RS, Parikh S, Sekhar GC, Kumar RS, Prabakaran S, Babu JG, et al. Diagnostic capability of optical coherence tomography (Stratus OCT 3) in early glaucoma. Ophthalmology. 2007;114:2238–43.

    Article  PubMed  Google Scholar 

  9. Tuulonen A, Airaksinen PJ. Initial glaucomatous optic disk and retinal nerve fiber layer abnormalities and their progression. Am J Ophthalmol. 1991;111:485–90.

    PubMed  CAS  Google Scholar 

  10. Hwang JM, Kim TW, Park KH, Kim DM, Kim H. Correlation between topographic profiles of localized retinal nerve fiber layer defects as determined by optical coherence tomography and red-free fundus photography. J Glaucoma. 2006;15:223–8.

    Article  PubMed  Google Scholar 

  11. Kim TW, Park UC, Park KH, Kim DM, et al. Ability of Stratus OCT to identify localized retinal nerve fiber layer defects in patients with normal standard automated perimetry results. Invest Ophthalmol Vis Sci. 2007;48:1635–41.

    Article  PubMed  Google Scholar 

  12. Jeoung JW, Kim SH, Park KH, Kim TW, Kim DM, et al. Quantitative assessment of diffuse retinal nerve fiber layer atrophy using optical coherence tomography: diffuse atrophy imaging study. Ophthalmology. 2010;117:1946–52.

    Article  PubMed  Google Scholar 

  13. Jeoung JW, Kim SH, Park KH, Kim TW, Kim DM. Diagnostic accuracy of OCT with a normative database to detect diffuse retinal nerve fiber layer atrophy: diffuse atrophy imaging study. Invest Ophthalmol Vis Sci. 2011;52:6074–80.

    Article  PubMed  Google Scholar 

  14. Sung KR, Kim DY, Park SB, Kook MS. Comparison of retinal nerve fiber layer thickness measured by Cirrus HD and Stratus optical coherence tomography. Ophthalmology. 2009;116:1264–70 (70 e1).

    Article  PubMed  Google Scholar 

  15. Kim NR, Lim H, Kim JH, Rho SS, Seong GJ, Kim CY, et al. Factors associated with false positives in retinal nerve fiber layer color codes from spectral-domain optical coherence tomography. Ophthalmology. 2011;118:1774–81.

    Article  PubMed  Google Scholar 

  16. Jeoung JW, Park KH. Comparison of Cirrus OCT and Stratus OCT on the ability to detect localized retinal nerve fiber layer defects in preperimetric glaucoma. Invest Ophthalmol Vis Sci. 2010;51:938–45.

    Article  PubMed  Google Scholar 

  17. Knight OJ, Chang RT, Feuer WJ, Budenz DL, et al. Comparison of retinal nerve fiber layer measurements using time domain and spectral domain optical coherent tomography. Ophthalmology. 2009;116:1271–7.

    Article  PubMed  Google Scholar 

  18. Leung CK, Ye C, Weinreb RN, Cheung CY, Qiu Q, Liu S, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a study on diagnostic agreement with Heidelberg retinal tomograph. Ophthalmology. 2010;117:267–74.

    Article  PubMed  Google Scholar 

  19. Quigley HA, Reacher M, Katz J, Strahlman E, Gilbert D, Scott R, et al. Quantitative grading of nerve fiber layer photographs. Ophthalmology. 1993;100:1800–7.

    Article  PubMed  CAS  Google Scholar 

  20. DeLong ER, DeLong DM, Clarke-Pearson DL, et al. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.

    Article  PubMed  CAS  Google Scholar 

  21. Leung CK, Cheung CY, Weinreb RN, Qiu Q, Liu S, Li H, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology. 2009;116:1257–63 (63 e1–2).

    Article  PubMed  Google Scholar 

  22. Leung CK, Lam S, Weinreb RN, Liu S, Ye C, Liu L, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: analysis of the retinal nerve fiber layer map for glaucoma detection. Ophthalmology. 2010;117:1684–91.

    Article  PubMed  Google Scholar 

  23. Kim NR, Lee ES, Seong GJ, Choi EH, Hong S, Kim CY, et al. Spectral-domain optical coherence tomography for detection of localized retinal nerve fiber layer defects in patients with open-angle glaucoma. Arch Ophthalmol. 2010;128:1121–8.

    Article  PubMed  Google Scholar 

  24. Park SB, Sung KR, Kang SY, Kim KR, Kook MS, et al. Comparison of glaucoma diagnostic capabilities of Cirrus HD and Stratus optical coherence tomography. Arch Ophthalmol. 2009;127:1603–9.

    Article  PubMed  Google Scholar 

  25. Medeiros FA, Zangwill LM, Bowd C, Vessani RM, Susanna R Jr, Weinreb RN, et al. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol. 2005;139:44–55.

    Article  PubMed  Google Scholar 

  26. Moreno-Montanes J, Olmo N, Alvarez A, Garcia N, Zarranz-Ventura J. Cirrus high-definition optical coherence tomography compared with Stratus optical coherence tomography in glaucoma diagnosis. Invest Ophthalmol Vis Sci. 2010;51:335–43.

    Article  PubMed  Google Scholar 

  27. Chang RT, Knight OJ, Feuer WJ, Budenz DL, et al. Sensitivity and specificity of time-domain versus spectral-domain optical coherence tomography in diagnosing early to moderate glaucoma. Ophthalmology. 2009;116:2294–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grant number 04-2012-1325 from the Seoul National University Hospital Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok Hwan Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

About this article

Cite this article

Kim, K.E., Kim, S.H., Jeoung, J.W. et al. Comparison of ability of time-domain and spectral-domain optical coherence tomography to detect diffuse retinal nerve fiber layer atrophy. Jpn J Ophthalmol 57, 529–539 (2013). https://doi.org/10.1007/s10384-013-0270-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-013-0270-8

Keywords