Skip to main content
Log in

Orally administered gadolinium orthovanadate GdVO4:Eu3+ nanoparticles do not affect the hydrophobic region of cell membranes of leukocytes

  • original article
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Summary

Aim

To assess the phospholipid bilayer of white blood cells (WBCs) and the ability of leukocytes to generate reactive oxygen species (ROS) in rats orally exposed to GdVO4:Eu3+ nanoparticle (VNP) solution for 2 weeks by fluorescent probes—ortho-hydroxy derivatives of 2,5-diaryl‑1,3‑oxazole.

Methods

Steady-state fluorescence spectroscopy, i.e., a study by the environment-sensitive fluorescent probes 2‑(2′-OH-phenyl)-5-(4′-phenyl-phenyl)-1,3-oxazole (probe O6O) and 2‑(2′-OH-phenyl)-phenanthro[9,10]-1,3-oxazole (probe PH7), and flow cytometry, i.e., analysis of 2′,7′-dichlorofluorescein (DCF), a product of a dye 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA), fluorescence in CD45+/7-aminoactinomycin D (7-AAD) cells, were used to evaluate the state of cell membranes and reactive oxygen species (ROS) generation in leukocytes of rats orally exposed to gadolinium orthovanadate nanoparticles(VNPs).

Results

No significant changes were detected in the spectra of the fluorescent probes bound to the WBCs from the rats orally exposed to nanoparticles in comparison with the corresponding spectra of the probes bound to the cells from the control group of animals. This indicates that in the case of the rats orally exposed to nanoparticles, no noticeable changes in physicochemical properties (i.e., in the polarity and the proton-donor ability) are observed in the lipid membranes of WBCs in the region where the probes locate. There was no statistically significant difference in the amount of ROShigh viable leukocytes in rats treated with VNPs and control samples.

Conclusion

Neither changes in the physical and chemical properties of the leukocyte membranes nor in ROS generation by WBCs are detected in the rats orally exposed to VNP solution for 2 weeks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ramos AP, Cruz MAE, Tovani CB, et al. Biomedical applications of nanotechnology. Biophys Rev. 2017;9(2):79–89. https://doi.org/10.1007/s12551-016-0246-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McNamara К, Tofail SAM. Nanoparticles in biomedical applications. Adv Phys. 2017;2(1):54–88. https://doi.org/10.1080/23746149.2016.1254570.

    Article  CAS  Google Scholar 

  3. Gupta R, Xie H. Nanoparticles in daily life: applications, toxicity and regulations. J Environ Pathol Toxicol Oncol. 2018;37(3):209–30. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sukhanova A, Bozrova S, Sokolov P, et al. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett. 2018;13(1):44. https://doi.org/10.1186/s11671-018-2457-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang YW, Cambre M, Lee HJ. The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. Int J Mol Sci. 2017;18(12):2702. https://doi.org/10.3390/ijms18122702.

    Article  CAS  PubMed Central  Google Scholar 

  6. Li RX, He YW, Zhang SY, et al. Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment. Acta Pharm Sin B. 2018;8:14–22.

    Article  Google Scholar 

  7. Abass MA, Selim SA, Selim AO, et al. Effect of orally administered zinc oxide nanoparticles on albino rat thymus and spleen. IUBMB Life. 2017;69(7):528–39. https://doi.org/10.1002/iub.1638.

    Article  CAS  PubMed  Google Scholar 

  8. Di Gioacchino M, Petrarca C, Lazzarin F, et al. Immunotoxicity of nanoparticles. Int J Immunopathol Pharmacol. 2011;24(1):65–71.

    Google Scholar 

  9. Wolfram J, Zhu M, Yang Y, et al. Safety of nanoparticles in medicine. Curr Drug Targets. 2015;16(14):1671–81.

    Article  CAS  Google Scholar 

  10. Li X, Xiao Y, Cui Y, et al. Cell membrane damage is involved in the impaired survival of bone marrow stem cells by oxidized low-density lipoprotein. J Cell Mol Med. 2014;18(12):2445–53. https://doi.org/10.1111/jcmm.12424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tkachenko AS, Marakushyn DI, Rezunenko YK, et al. A study of erythrocyte membranes in carrageenan-induced gastroenterocolitis by method of fluorescent probes. HVM Bioflux. 2018;10(2):37–41.

    CAS  Google Scholar 

  12. Klochkov VK, Malyshenko AI, Sedyh OO, et al. Wet-chemical synthesis and characterization of luminescent colloidal nanoparticles: ReVO4:Eu3+ (Re=La, Gd, Y) with rod-like and spindle-like shape. Funct Mater. 2011;1:111–5.

    Google Scholar 

  13. Posokhov YO, Kyrychenko A, Korniyenko Y. Derivatives of 2,5-diaryl‑1,3‑oxazole and 2,5-diaryl‑1,3,4-oxadiazole as environment-sensitive fluorescent probes for studies of biological membranes. In: Geddes CD, editor. Reviews in fluorescence 2017. Cham: Springer Nature Switzerland AG; 2018. pp. 199–230.

    Chapter  Google Scholar 

  14. Doroshenko AO, Posokhov EA, Verezubova AA, et al. Radiationless deactivation of excited phototautomer form and molecular structure of ESIPT-compounds. Photochem Photobiol Sci. 2002;1:92–9.

    Article  CAS  Google Scholar 

  15. Doroshenko AO, Posokhov EA, Verezubova AA, et al. Excited state intramolecular proton transfer reaction and luminescent properties of the ortho-hydroxy derivatives of 2,5-diphenyl‑1,3,4-oxadiazole. J Phys Org Chem. 2000;13:253–65.

    Article  CAS  Google Scholar 

  16. Doroshenko AO, Posokhov EA. Proton phototransfer in a series of ortho-hydroxy derivatives of 2,5-diphenyl‑1,3‑оxazole and 2,5-diphenyl‑1,3,4-оxadiazole in polystyrene films. Theor Expert Chem. 1999;35(6):334–7.

    Article  CAS  Google Scholar 

  17. Doroshenko AO, Posokhov EA, Shershukov VM, et al. Intramolecular proton-transfer reaction in an excited state in a series of ortho-hydroxy derivatives of 2,5-diaryloxazole. High Energy Chem. 1997;31(6):388–94.

    CAS  Google Scholar 

  18. Silver RB. Ratio imaging: practical considerations for measuring intracellular calcium and pH in living tissue. Methods Cell Biol. 1998;56:237–51.

    Article  CAS  Google Scholar 

  19. Posokhov Y, Kyrychenko A. Location of fluorescent probes (2-hydroxy derivatives of 2,5-diaryl‑1,3‑oxazole) in lipid membrane studied by fluorescence spectroscopy and molecular dynamics simulation. Biophys Chem. 2018;235:9–18.

    Article  CAS  Google Scholar 

  20. Dobretsov GE. Fluorescence probes in cell, membrane and lipoprotein investigations. Moscow: Nauka; 1989. p. 277.

    Google Scholar 

  21. Kavok N, Grygorova G, Klochkov V, et al. The role of serum proteins in the stabilization of colloidal LnVO4:Eu3+ (Ln = La, Gd, Y) and CeO2 nanoparticles. Colloids Surf A Physicochem Eng Asp. 2017;529:594–9. https://doi.org/10.1016/j.colsurfa.2017.06.052.

    Article  CAS  Google Scholar 

  22. Behzadi S, Serpooshan V, Tao W, et al. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev. 2017;46(14):4218–44. https://doi.org/10.1039/c6cs00636a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gustafson HH, Holt-Casper D, Grainger DW, et al. Nanoparticle uptake: the phagocyte problem. Nano Today. 2015;10(4):487–510. https://doi.org/10.1016/j.nantod.2015.06.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Betker JL, Jones D, Childs CR, et al. Nanoparticle uptake by circulating leukocytes: a major barrier to tumor delivery. J Control Release. 2018;286:85–93. https://doi.org/10.1016/j.jconrel.2018.07.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Catalá Á. Lipid peroxidation modifies the assembly of biological membranes “the lipid whisker model”. Front Physiol. 2015;5:520. https://doi.org/10.3389/fphys.2014.00520.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4‑hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438. https://doi.org/10.1155/2014/360438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reiter RJ, Tan DX, Galano A. Melatonin reduces lipid peroxidation and membrane viscosity. Front Physiol. 2014;5:377. https://doi.org/10.3389/fphys.2014.00377.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Klochkov VK, Kaliman VP, Karpenko NA, et al. In vivo effects of rare-earth based nanoparticles on oxidative balance in rats. Biotechnol Acta. 2016;6:72–81.

    Article  Google Scholar 

  29. Gibbons E, Pickett KR, Streeter MC, et al. Molecular details of membrane fluidity changes during apoptosis and relationship to phospholipase A(2) activity. Biochim Biophys Acta. 2013;1828(2):887–95. https://doi.org/10.1016/j.bbamem.2012.08.024.

    Article  CAS  PubMed  Google Scholar 

  30. Jourd’heuil D, Aspinall A, Reynolds JD, et al. Membrane fluidity increases during apoptosis of sheep ileal Peyer’s patch B cells. Can J Physiol Pharmacol. 1996;74(6):706–11.

    Article  Google Scholar 

  31. Tkachenko A, Marakushyn D, Kalashnyk I, et al. A study of enterocyte membranes during activation of apoptotic processes in chronic carrageenan-induced gastroenterocolitis. Med Glas (Zenica). 2018;15(2):87–92. https://doi.org/10.17392/946-18.

    Article  Google Scholar 

  32. Gianulis EC, Pakhomov AG. Gadolinium modifies the cell membrane to inhibit permeabilization by nanosecond electric pulses. Arch Biochem Biophys. 2015;570:1–7. https://doi.org/10.1016/j.abb.2015.02.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Elsabahy M, Wooley KL. Cytokines as biomarkers of nanoparticle immunotoxicity. Chem Soc Rev. 2013;42(12):5552–76. https://doi.org/10.1039/c3cs60064e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton S. Tkachenko PhD.

Ethics declarations

Conflict of interest

A.S. Tkachenko, V.K. Klochkov, V.N. Lesovoy, V.V. Myasoedov, N.S. Kavok, A.I. Onishchenko, S.L. Yefimova, and Y.O. Posokhov declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkachenko, A.S., Klochkov, V.K., Lesovoy, V.N. et al. Orally administered gadolinium orthovanadate GdVO4:Eu3+ nanoparticles do not affect the hydrophobic region of cell membranes of leukocytes. Wien Med Wochenschr 170, 189–195 (2020). https://doi.org/10.1007/s10354-020-00735-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-020-00735-4

Keywords

Navigation