Skip to main content
Log in

Confocal laser scanning microscopy—a powerful tool in bone research

Konfokale Laser-Scanning-Mikroskopie – eine leistungsfähige Methode in der Knochenforschung

  • main topic
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Summary

The confocal laser scanning microscope (CLSM) enables the collection of images picturing selected planes in depth of thick samples, thus giving 3D information while keeping the sample intact. In this article we give an overview of our CLSM applications in bone research: (i) the characterization of osteoblasts and osteoclasts properties in cell biology, (ii) the visualization of the three dimensional (3D) osteocyte lacunar canalicular network in undemineralized plastic-embedded bone samples, (iii) the observation of tetracycline labels in bone biopsy samples from patients in combination with information on the mineralization density from quantitative backscatter electron imaging, which enables the time course of mineral accumulation in newly formed bone to be followed, (iv) the precise measurement of the thickness of thin ground bone sections, a prerequisite for the mapping of local mechanical properties by scanning acoustic microscopy.

Zusammenfassung

Das konfokale Laser-Scanning-Mikroskop (CLSM) ermöglicht die Serienaufnahme von Bildern auch aus tiefer gelegenen Schichten einer Probe und damit 3‑D-Informationen, ohne dabei die Probe zu zerstören. Im vorliegenden Artikel geben die Autoren einen Überblick über ihre Anwendungen des CLSM in der Knochenforschung: (i) die Charakterisierung von Eigenschaften der Osteoblasten und Osteoklasten in der Zellbiologie; (ii) die dreidimensionale (3-D-)Darstellung und Vermessung des Osteozytenlakunen-Canaliculi-Netzwerks von in Kunststoff eingebetteten nichtdemineralisierten Knochenproben; (iii) die Identifikation von Tetrazyklinmarkierungen in Knochenbiopsien von Patienten, die – in Kombination mit Informationen über die lokale Kalziumkonzentration aus quantitativer Rückstreuelektronenmikroskopie – Rückschlüsse über den zeitabhängigen Anstieg der Kalziumkonzentration in neu angebautem Knochen erlaubt; (iv) die präzise Messung der Dicke von Knochendünnschliffen. Letztere Information ist die Voraussetzung für die Ermittlung bestimmter lokaler mechanischer Eigenschaften mit Ultraschallmikroskopie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bidan CM, Kollmannsberger P, Gering V, Ehrig S, Joly P, Petersen A, Vogel V, Fratzl P, Dunlop JW. Gradual conversion of cellular stress patterns into pre-stressed matrix architecture during in vitro tissue growth. J R Soc Interface. 2016; https://doi.org/10.1098/rsif.2016.0136.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Blouin S, Puchegger S, Roschger A, Berzlanovich A, Fratzl P, Klaushofer K, Roschger P. Mapping dynamical mechanical properties of osteonal bone by scanning acoustic microscopy in time-of-flight mode. Microsc Microanal. 2014;20(3):924–36.

    Article  PubMed  CAS  Google Scholar 

  3. Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229–38.

    Article  PubMed  CAS  Google Scholar 

  4. Cappariello A, Maurizi A, Veeriah V, Teti A. The Great Beauty of the osteoclast. Arch Biochem Biophys. 2014;558:70–8.

    Article  PubMed  CAS  Google Scholar 

  5. Dallas SL, Veno PA. Live imaging of bone cell and organ cultures. Methods Mol Biol. 2012;816:425–57.

    Article  PubMed  CAS  Google Scholar 

  6. Hassler N, Roschger A, Gamsjaeger S, Kramer I, Lueger S, van Lierop A, Roschger P, Klaushofer K, Paschalis EP, Kneissel M, Papapoulos S. Sclerostin deficiency is linked to altered bone composition. J Bone Miner Res. 2014;29(10):2144–51.

    Article  PubMed  CAS  Google Scholar 

  7. Karsenty G. Update on the biology of osteocalcin. Endocr Pract. 2017;23(10):1270–4.

    Article  PubMed  Google Scholar 

  8. Luegmayr E, Glantschnig H, Varga F, Klaushofer K. The organization of adherens junctions in mouse osteoblast-like cells (MC3T3-E1) and their modulation by triiodothyronine and 1,25-dihydroxyvitamin D3. Histochem Cell Biol. 2000;113(6):467–78.

    PubMed  CAS  Google Scholar 

  9. Luegmayr E, Varga F, Frank T, Roschger P, Klaushofer K. Effects of triiodothyronine on morphology, growth behavior, and the actin cytoskeleton in mouse osteoblastic cells (MC3T3-E1). Bone. 1996;18(6):591–9.

    Article  PubMed  CAS  Google Scholar 

  10. Luegmayr E, Varga F, Glantschnig H, Fratzl-Zelman N, Rumpler M, Ellinger A, Klaushofer K. 1,25-Dihydroxy vitamin D3 and tri-iodothyronine stimulate the expression of a protein immunologically related to osteocalcin. J Histochem Cytochem. 1998;46(4):477–86.

    Article  PubMed  CAS  Google Scholar 

  11. Minsky M. Memoir on inventing the confocal scanning microscope. Scanning. 1988;10(4):128–38.

    Article  Google Scholar 

  12. Repp F, Kollmannsberger P, Roschger A, Berzlanovich A, Gruber GM, Roschger P, Wagermaier W, Weinkamer R. Coalignment of osteocyte canaliculi and collagen fibers in human osteonal bone. J Struct Biol. 2017a;199(3):177–86.

    Article  PubMed  CAS  Google Scholar 

  13. Repp F, Kollmannsberger P, Roschger A, Kerschnitzki M, Berzlanovich A, Gruber GM, Roschger P, Wagermaier W, Weinkamer R. Spatial heterogeneity in the canalicular density of the osteocyte network in human osteons. Bone Rep. 2017b;6:101–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Roschger P, Paschalis EP, Fratzl P, Klaushofer K. Bone mineralization density distribution in health and disease. Bone. 2008;42(3):456–66.

    Article  PubMed  CAS  Google Scholar 

  15. Rumpler M, Wurger T, Roschger P, Zwettler E, Sturmlechner I, Altmann P, Fratzl P, Rogers MJ, Klaushofer K. Osteoclasts on bone and dentin in vitro: mechanism of trail formation and comparison of resorption behavior. Calcif Tissue Int. 2013;93(6):526–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Varga F, Luegmayr E, Fratzl-Zelman N, Glantschnig H, Ellinger A, Prinz D, Rumpler M, Klaushofer K. Tri-iodothyronine inhibits multilayer formation of the osteoblastic cell line, MC3T3-E1, by promoting apoptosis. J Endocrinol. 1999;160(1):57–65.

    Article  PubMed  CAS  Google Scholar 

  17. Varga F, Rumpler M, Luegmayr E, Fratzl-Zelman N, Glantschnig H, Klaushofer K. Triiodothyronine, a regulator of osteoblastic differentiation: depression of histone H4, attenuation of c‑fos/c-jun, and induction of osteocalcin expression. Calcif Tissue Int. 1997;61(5):404–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to ao. Univ.-Prof. Dr. Adolf Ellinger, who—in his role as a consultant for microscopy—supported the strategic development plan for the foundation of the Ludwig Boltzmann Institute of Osteology (LBIO) in the late 1980s. It was his advice to acquire a CLSM as basic equipment for LBIO, at that time an innovative instrument. In the meantime, the CLSM has become a standard equipment for bone research and has been applied to a number of research questions in bone biology and material science by LBIO scientists.

The authors also thank their colleagues, in particular those who were engaged with development of the staining and imaging protocol at the outset of CLSM imaging at the LBIO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Blouin.

Ethics declarations

Conflict of interest

S. Blouin, A. Roschger, F. Varga, B. Misof, S. Spitzer, P. Roschger, and K. Klaushofer declare that they have no competing interests.

Additional information

This article is dedicated to Professor Ellinger who recognized early the potential of CLSM and encouraged our institute to purchase such a device. In the meantime, CLSM is used in a wide range of applications at the Ludwig Boltzmann Institute of Osteology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blouin, S., Roschger, A., Varga, F. et al. Confocal laser scanning microscopy—a powerful tool in bone research. Wien Med Wochenschr 168, 314–321 (2018). https://doi.org/10.1007/s10354-018-0639-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-018-0639-x

Keywords

Schlüsselwörter

Navigation